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Last Time

• We began on the Transport layer

• Focus
– How do we send information reliably?

• Topics
– ARQ and sliding windows
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This Time

• More on the Transport Layer

• Focus
– How do we connect processes?

• Topics
– Naming processes
– Connection setup / teardown
– Flow control
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Naming Processes/Services

• Process here is an abstract term for your Web browser
(HTTP), Email servers (SMTP), hostname translation
(DNS), RealAudio player (RTSP), etc.

• How do we identify for remote communication?
– Process id or memory address are OS-specific and transient

• So TCP and UDP use Ports
– 16-bit integers representing mailboxes that processes “rent”
– Identify process uniquely as (IP address, protocol, port)
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Picking Port Numbers

• We still have the problem of allocating port numbers
– What port should a Web server use on host X?
– To what port should you send to contact that Web server?

• Servers typically bind to “well-known” port numbers
– e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
– Ports below 1024 reserved for “well-known” services

• Clients use OS-assigned temporary (ephemeral) ports
– Above 1024, recycled by OS when client finished
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SrcPort DstPort

Checksum Length

Data

0 16 31

User Datagram Protocol (UDP)

• Provides message delivery between processes
– Source port filled in by OS as message is sent
– Destination port identifies UDP delivery queue at endpoint
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UDP Checksum

• UDP includes optional protection against errors
– Checksum intended as an end-to-end check on delivery
– So it covers data, UDP header, and IP pseudoheader

SrcPort DstPort

Checksum Length

Data

0 16 31
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Transmission Control Protocol (TCP)

• Reliable bi-directional bytestream between processes
– Message boundaries are not preserved

• Connections
– Conversation between endpoints with beginning and end

• Flow control (later)
– Prevents sender from over-running receiver buffers

• Congestion control (later)
– Prevents sender from over-running network buffers
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Options (variable)
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TCP Header Format

• Ports plus IP addresses identify a connection
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TCP Header Format

• Sequence, Ack numbers used for the sliding window
– Congestion control works by controlling the window size
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TCP Header Format

• Flags may be URG, ACK, PSH, RST, SYN, FIN
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TCP Header Format

• Advertised window is used for flow control
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Other TCP Header Fields

• Header length allows for variable length TCP header
with options for extensions such as timestamps,
selective acknowledgements, etc.

• Checksum is analogous to that of UDP
• Urgent pointer/data not used in practice
• Very few bits not assigned …
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Connection Establishment

• Both sender and receiver must be ready before we start
to transfer the data
– Sender and receiver need to agree on a set of parameters
– e.g., the Maximum Segment Size (MSS)

• This is signaling
– It sets up state at the endpoints
– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used
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Three-Way Handshake

• Opens both directions for transfer

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data
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Some Comments

• We could abbreviate this setup, but it was chosen to be
robust, especially against delayed duplicates
– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting
confused by a previous incarnation of a connection

• But with random ISN it actually proves that two hosts
can communicate
– Weak form of authentication
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Again, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data
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Connection Teardown

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close
– both sides shutdown independently
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TCP Connection Teardown
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The TIME_WAIT State

• We wait 2MSL (two times the maximum segment
lifetime of 60 seconds) before completing the close

• Why?

• ACK might have been lost and so FIN will be resent
• Could interfere with a subsequent connection
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Key Concepts

• We use ports to name processes in TCP/UDP
– “Well-known” ports are used for popular services

• Connection setup and teardown complicated by the
effects of the network on messages
– TCP uses a three-way handshake to set up a connection
– TCP uses a symmetric disconnect


