
1

CSE/EE 461 – Lecture 14

Connections

David Wetherall
djw@cs.washington.edu

djw // CSE/EE 461, Autumn 2001 L14.2

Last Time

• We began on the Transport layer

• Focus
– How do we send information reliably?

• Topics
– ARQ and sliding windows

Physical

Data Link
Network

Transport

Session

Presentation

Application

2

djw // CSE/EE 461, Autumn 2001 L14.3

This Time

• More on the Transport Layer

• Focus
– How do we connect processes?

• Topics
– Naming processes
– Connection setup / teardown
– Flow control

Physical

Data Link
Network

Transport

Session

Presentation

Application

djw // CSE/EE 461, Autumn 2001 L14.4

Naming Processes/Services

• Process here is an abstract term for your Web browser
(HTTP), Email servers (SMTP), hostname translation
(DNS), RealAudio player (RTSP), etc.

• How do we identify for remote communication?
– Process id or memory address are OS-specific and transient

• So TCP and UDP use Ports
– 16-bit integers representing mailboxes that processes “rent”
– Identify process uniquely as (IP address, protocol, port)

3

djw // CSE/EE 461, Autumn 2001 L14.5

Picking Port Numbers

• We still have the problem of allocating port numbers
– What port should a Web server use on host X?
– To what port should you send to contact that Web server?

• Servers typically bind to “well-known” port numbers
– e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
– Ports below 1024 reserved for “well-known” services

• Clients use OS-assigned temporary (ephemeral) ports
– Above 1024, recycled by OS when client finished

djw // CSE/EE 461, Autumn 2001 L14.6

SrcPort DstPort

Checksum Length

Data

0 16 31

User Datagram Protocol (UDP)

• Provides message delivery between processes
– Source port filled in by OS as message is sent
– Destination port identifies UDP delivery queue at endpoint

4

djw // CSE/EE 461, Autumn 2001 L14.7

Application
process

Application
process

Application
process

Packets arrive

Ports

Message
Queues

DeMux

UDP Delivery

Kernel
boundary

djw // CSE/EE 461, Autumn 2001 L14.8

UDP Checksum

• UDP includes optional protection against errors
– Checksum intended as an end-to-end check on delivery
– So it covers data, UDP header, and IP pseudoheader

SrcPort DstPort

Checksum Length

Data

0 16 31

5

djw // CSE/EE 461, Autumn 2001 L14.9

Transmission Control Protocol (TCP)

• Reliable bi-directional bytestream between processes
– Message boundaries are not preserved

• Connections
– Conversation between endpoints with beginning and end

• Flow control (later)
– Prevents sender from over-running receiver buffers

• Congestion control (later)
– Prevents sender from over-running network buffers

djw // CSE/EE 461, Autumn 2001 L14.10

TCP Delivery

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

6

djw // CSE/EE 461, Autumn 2001 L14.11

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Ports plus IP addresses identify a connection

djw // CSE/EE 461, Autumn 2001 L14.12

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Sequence, Ack numbers used for the sliding window
– Congestion control works by controlling the window size

7

djw // CSE/EE 461, Autumn 2001 L14.13

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Flags may be URG, ACK, PSH, RST, SYN, FIN

djw // CSE/EE 461, Autumn 2001 L14.14

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Advertised window is used for flow control

8

djw // CSE/EE 461, Autumn 2001 L14.15

Other TCP Header Fields

• Header length allows for variable length TCP header
with options for extensions such as timestamps,
selective acknowledgements, etc.

• Checksum is analogous to that of UDP
• Urgent pointer/data not used in practice
• Very few bits not assigned …

djw // CSE/EE 461, Autumn 2001 L14.16

Connection Establishment

• Both sender and receiver must be ready before we start
to transfer the data
– Sender and receiver need to agree on a set of parameters
– e.g., the Maximum Segment Size (MSS)

• This is signaling
– It sets up state at the endpoints
– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used

9

djw // CSE/EE 461, Autumn 2001 L14.17

Three-Way Handshake

• Opens both directions for transfer

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

djw // CSE/EE 461, Autumn 2001 L14.18

Some Comments

• We could abbreviate this setup, but it was chosen to be
robust, especially against delayed duplicates
– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting
confused by a previous incarnation of a connection

• But with random ISN it actually proves that two hosts
can communicate
– Weak form of authentication

10

djw // CSE/EE 461, Autumn 2001 L14.19

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACKClose /FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open /SYN

TCP State Transitions

djw // CSE/EE 461, Autumn 2001 L14.20

Again, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

11

djw // CSE/EE 461, Autumn 2001 L14.21

Connection Teardown

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close
– both sides shutdown independently

djw // CSE/EE 461, Autumn 2001 L14.22

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK

FIN

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2

TIME_WAIT

CLOSEDCLOSED

…

12

djw // CSE/EE 461, Autumn 2001 L14.23

The TIME_WAIT State

• We wait 2MSL (two times the maximum segment
lifetime of 60 seconds) before completing the close

• Why?

• ACK might have been lost and so FIN will be resent
• Could interfere with a subsequent connection

djw // CSE/EE 461, Autumn 2001 L14.24

Key Concepts

• We use ports to name processes in TCP/UDP
– “Well-known” ports are used for popular services

• Connection setup and teardown complicated by the
effects of the network on messages
– TCP uses a three-way handshake to set up a connection
– TCP uses a symmetric disconnect

