CSE/EE 461 - Lecture 13/14+

E2E and Flow Control

David Wetherall
djw@cs.washington.edu

Flow Control

- Sender must transmit data no faster than it can be consumed by the receiver
- Receiver might be a slow machine
- App might consume data slowly
- Implement by adjusting the size of the sliding window used at the sender based on receiver feedback about available buffer space
- This is the purpose of the Advertised Window field

Sender and Receiver Buffering

Example - Exchange of Packets

Receiver has buffer of size 4 and application doesn't read

Example - Buffer at Sender

$\mathrm{T}=1$	1	2	3	4	5	6	7	8		9	
$\mathrm{T}=2$	1	2	3	4	5	6	7	8		9	=acked
T=3	1	2	3	4	5	6	7	8		9	ent
$\mathrm{T}=4$	1	2	3	4	5	6	7	8		9	
T=5	1	2	3	4	5	6	7	8		9	
$\mathrm{T}=6$	1	2	3	4	5	6	7	8		9	

Which layer provides Reliability?

- We've been talking about the Transport layer but ...
- ARQ is used by some link layers
- Acknowledgements in 802.11
- Error detection/correction codes boost reliability
- Ethernet CRC, IP header checksum, etc.
- Where is the "right" place in the protocol stack?

End-to-End Argument

- Key design principle applied in the Internet
- Reliability is needed end-to-end and can't be replaced by lower layer mechanisms. So put it end-to-end; use lower mechanisms to improve performance as needed.
- TCP provides reliable delivery
- Checksums packet data as well
- Lower layers keep their residual error rate is low
- CRC enough for Ethernet; wireless links more problematic

