CSE/EE 461 Lecture 10
Reliable Transport

Tom Anderson
tom@cs.washington.edu
Peterson, Chapter 2.5, 5.2

IPvs. TCP

e IP: routers can be arbitrarily bad
packets can be lost
packets can be reordered
packets can be duplicated
packets have limited size & can be fragmented

o TCP: applications need something better
reliable delivery
messages arrive in order
only one copy of each message is received
supports arbitrarily long messages
match speed of sender to speed of reciever
process to process communication

Reliable Transmission

How do we send packets reliably?

e Two mechanisms
Acknowledgements
Timeouts

o Simplest reliable protocol: Stop and Wait

Stop and Wait

e Send a packet, wait until ack arrives
retransmit if no ack within timeout

e Receiver acks each packet as it arrives

Sender Recever

4&

Time

Timeout_

Time

___Timeout

__Timeout

ke

Recovering from error

WY

4&

ACK lost

___Timeout

- P&Cket

_Timeout

”\-

P&Cket

4&

Packet lost

Timeout

... Timeout,

Early timeout

e Use unique ID for each pkt
for both packets and acks

e How many bits for the ID?

For stop and wait, a single bit!

assuming in-order delivery...

How can we recognize resends?

v/g

Q
lf_O

Pkt o

i

ACK L

\

What if packets can be delayed?

o Solutions? 0
. T

Never reuse a unique ID? 0
Change IP layer to eliminate

. o 0
packet reordering”
Prevent very late delivery? 1

— IP routers keep hop count per pkt, 1 >

discard if exceeded

— ID’s not reused within delay bound Accept !

0
T Rej ect !

What happens on reboot?

o How do we distinguish packets sent before
and after reboot?

Can’'t remember last sequence # used unless
written to stable storage (disk or NVRAM)
e Solutions?
Restart sequence # at 0?
Assume boot takes max packet delay?

Store epoch number -- increment high order bits of
sequence # on every boot?

How do we keep the pipe full?

Unless the bandwidth*delay product
is small, stop and wait can't fill pipe

Solution: Send multiple packets
without waiting for first to be acked

Reliable, unordered delivery:
Send new packet after each ack

Sender keeps list of unack’ed packets;
resends after timeout

Receiver same as stop&wait
What if pkt 2 keeps being lost?

N/

Sliding Window:
Reliable, ordered delivery

e Two constraints:
Receiver can't deliver packet to application until all
prior packets have arrived
Sender must prevent buffer overflow at receiver

e Solution: sliding window

circular buffer at sender and receiver
— packets in transit <= buffer size

— advance when sender and receiver agree packets at
beginning have been received

How big should the window be?
— bandwidth * round trip delay

Sender/Recelver State

e sender
packets sent and acked (LAR = last ack recvd)
packets sent but not yet acked
packets not yet sent (LFS = last frame sent)

e receiver

packets received and acked (NFE = next frame
expected)

packets received out of order
packets not yet received (LFA = last frame ok)

Sliding Window

Send W ndow
¥ \
012 3 45 ¢
sent XIx|I x| x| xIx| x
acked |[x
f A
LAR LFS
Recei ve W ndow
01 ﬁ/ 34 5 ¢
recvd |x|x X | x| x| x
acked [x|x
t A

NFE LFA

What if we lose a packet?

e Go back N
receiver acks “got up through k”
ok for receiver to buffer out of order packets
on timeout, sender restarts from k+1

e Selective retransmission
receiver sends ack for each pkt in window
on timeout, resend only missing packet

Sender Algorithm

e Send full window, set timeout

e On ack:
if it increases LAR (packets sent & acked)
send next packet(s)
e On timeout:
resend LAR+1

Receiver Algorithm

e On packet arrival:

if packet is the NFE (next frame expected)
send ack
increase NFE
hand packet(s) to application

else
send ack
discard if < NFE

Can we shortcut timeout?

o If packets usually arrive in order, out of
order signals drop
Negative ack
—receiver requests missing packet

Fast retransmit
—sender detects missing ack

What does TCP do?

e Go back N + fast retransmit
receiver acks with NFE-1

if sender gets acks that don’t advance NFE,
resends missing packet
—stop and wait for ack for missing packet?
—Resend entire window?

e Proposal to add selective acks

What if link isvery lossy?

o Wireless packet loss rates can be 10-30%

end to end retransmission will still work, even with go
back N

will be inefficient
e Solution: hop by hop retransmission
performance optimization, not for correctness
e End to end principle

ok to do optimizations at lower layer
still need end to end retransmission

Avoiding burstiness: ack pacing

bot t| eneck
packets

Sender Recei ver

acks
W ndow size = round trip delay * bit rate

How many sequence #’°s?

e Window size + 17?
Suppose window size = 3
Sequencespace: 01230123

send 0 1 2, all arrive
—if acks are lost, resend 0 1 2
—if acks arrive, send new 301

e Window <= (maxseq#+1)/2

How do we determine timeouts?

e If timeout too small, useless retransmits

causes extra traffic, increasing congestion,
increasing packet losses, ...

o If timeout too big, inefficient

o Timeout should be based on round trip
time (RTT)
varies with destination subnet, routing
changes, congestion, ...

Estimating RTTs

o |ldea: Adapt based on recent past measurements
For each packet, note time sent and time ack received

Compute RTT samples and average recent samples for
timeout

EstimatedRTT = a x EstimatedRTT + (1 - a) X
SampleRTT

This is an exponentially-weighted moving average (low
pass filter) that smoothes the samples. Typically,
a=0.81t00.9.

Set timeout to small multiple (2) of the estimate

Estimated Retransmit Timer

Retransmission ambiguity

e How do we distinguish first
ack from retransmitted ack?
First send to first ack?
—What if ack dropped?
Last send to last ack?
—What if last ack dropped?
e Might never be able to correct
too short timeout!

Ti e

A/

Retransmission ambiguity:
Solutions?

o TCP: Karn-Partridge
ignore RTT estimates for retransmitted pkts
double timeout on every retransmission
o Add sequence #'s to retransmissions
(retry #1, retry #2, ...)

e TCP proposal: Add timestamp into
packet header; ack returns timestamp

Jacobson/K arels Algorithm

e Problem:
Variance in RTTs gets large as network gets loaded
Average RTT isn’t a good predictor when we need it
most

e Solution: Track variance too.
Difference = SampleRTT — EstimatedRTT
EstimatedRTT = EstimatedRTT + (0 x Difference)
Deviation = Deviation + &(|Difference|- Deviation)
Timeout = p x EstimatedRTT + @ x Deviation
In practice, d=1/8, p=1and =4

Estimate with Mean + Variance

Summary

e Transport layer (TCP) implements reliable, in
order packet delivery
retransmissions, sliding window, RTT est.
o Why not retransmit at link layer?
wireless: 802.11 implements ARQ
Ethernet, other link protocols implement CRC’s
o End to end principle: put functionality at
lowest layer it can be completely and correctly
implemented
lower layers can implement as optimization

