
CSE/EE 461 Lecture 10
Reliable Transport

Tom Anderson
tom@cs.washington.edu

Peterson, Chapter 2.5, 5.2

IP vs. TCP

● IP: routers can be arbitrarily bad
■ packets can be lost
■ packets can be reordered
■ packets can be duplicated
■ packets have limited size & can be fragmented

● TCP: applications need something better
■ reliable delivery
■ messages arrive in order
■ only one copy of each message is received
■ supports arbitrarily long messages
■ match speed of sender to speed of reciever
■ process to process communication

Reliable Transmission

How do we send packets reliably?

● Two mechanisms
■ Acknowledgements

■ Timeouts

● Simplest reliable protocol: Stop and Wait

Stop and Wait

Time

Packet

ACK

T
im

eo
ut

● Send a packet, wait until ack arrives
■ retransmit if no ack within timeout

● Receiver acks each packet as it arrives

Sender Receiver

Recovering from error

Packet

ACK

T
im

eo
ut

Packet

ACK

T
im

eo
ut

Packet

T
im

eo
ut

Packet

ACK
T

im
eo

ut

Time

Packet

ACK

T
im

eo
ut

Packet

ACK

T
im

eo
ut

ACK lost Packet lost Early timeout

How can we recognize resends?

● Use unique ID for each pkt
■ for both packets and acks

● How many bits for the ID?
■ For stop and wait, a single bit!

■ assuming in-order delivery…

Pkt 0

ACK 0

Pkt 0

ACK 1

Pkt 1ACK 0

What if packets can be delayed?

● Solutions?
■ Never reuse a unique ID?
■ Change IP layer to eliminate

packet reordering?
■ Prevent very late delivery?

– IP routers keep hop count per pkt,
discard if exceeded

– ID’s not reused within delay bound

0

0

 1

1

 0

0
Accept!

Reject!

What happens on reboot?

● How do we distinguish packets sent before
and after reboot?
■ Can’t remember last sequence # used unless

written to stable storage (disk or NVRAM)

● Solutions?
■ Restart sequence # at 0?
■ Assume boot takes max packet delay?
■ Store epoch number -- increment high order bits of

sequence # on every boot?

How do we keep the pipe full?

● Unless the bandwidth*delay product
is small, stop and wait can’t fill pipe

● Solution: Send multiple packets
without waiting for first to be acked

● Reliable, unordered delivery:
■ Send new packet after each ack
■ Sender keeps list of unack’ed packets;

resends after timeout
■ Receiver same as stop&wait

● What if pkt 2 keeps being lost?

Sliding Window:
Reliable, ordered delivery

● Two constraints:
■ Receiver can’t deliver packet to application until all

prior packets have arrived
■ Sender must prevent buffer overflow at receiver

● Solution: sliding window
■ circular buffer at sender and receiver

– packets in transit <= buffer size
– advance when sender and receiver agree packets at

beginning have been received

■ How big should the window be?
– bandwidth * round trip delay

Sender/Receiver State

● sender
■ packets sent and acked (LAR = last ack recvd)
■ packets sent but not yet acked
■ packets not yet sent (LFS = last frame sent)

● receiver
■ packets received and acked (NFE = next frame

expected)
■ packets received out of order
■ packets not yet received (LFA = last frame ok)

Sliding Window

LAR LFS

Send Window

sent
acked

0 1 2
x x
x

x xx x x
3 4 5 6

NFE LFA

Receive Window

recvd
acked

0 1 2
x x
x

xx x x
3 4 5 6

x

What if we lose a packet?

● Go back N
■ receiver acks “got up through k”

■ ok for receiver to buffer out of order packets

■ on timeout, sender restarts from k+1

● Selective retransmission
■ receiver sends ack for each pkt in window

■ on timeout, resend only missing packet

Sender Algorithm

● Send full window, set timeout
● On ack:

■ if it increases LAR (packets sent & acked)

■ send next packet(s)

● On timeout:
■ resend LAR+1

Receiver Algorithm

● On packet arrival:
■ if packet is the NFE (next frame expected)
■ send ack
■ increase NFE
■ hand packet(s) to application
■ else
■ send ack
■ discard if < NFE

Can we shortcut timeout?

● If packets usually arrive in order, out of
order signals drop
■ Negative ack

– receiver requests missing packet

■ Fast retransmit
– sender detects missing ack

What does TCP do?

● Go back N + fast retransmit
■ receiver acks with NFE-1

■ if sender gets acks that don’t advance NFE,
resends missing packet

– stop and wait for ack for missing packet?
– Resend entire window?

● Proposal to add selective acks

What if link is very lossy?

● Wireless packet loss rates can be 10-30%
■ end to end retransmission will still work, even with go

back N
■ will be inefficient

● Solution: hop by hop retransmission
■ performance optimization, not for correctness

● End to end principle
■ ok to do optimizations at lower layer
■ still need end to end retransmission

Avoiding burstiness: ack pacing

Sender Receiver

bottleneck

packets

acks

Window size = round trip delay * bit rate

How many sequence #’s?

● Window size + 1?
■ Suppose window size = 3

■ Sequence space: 0 1 2 3 0 1 2 3

■ send 0 1 2, all arrive
– if acks are lost, resend 0 1 2
– if acks arrive, send new 3 0 1

● Window <= (max seq # + 1) / 2

How do we determine timeouts?

● If timeout too small, useless retransmits
■ causes extra traffic, increasing congestion,

increasing packet losses, …

● If timeout too big, inefficient
● Timeout should be based on round trip

time (RTT)
■ varies with destination subnet, routing

changes, congestion, …

Estimating RTTs

● Idea: Adapt based on recent past measurements
■ For each packet, note time sent and time ack received
■ Compute RTT samples and average recent samples for

timeout
■ EstimatedRTT = α x EstimatedRTT + (1 - α) x

SampleRTT

■ This is an exponentially-weighted moving average (low
pass filter) that smoothes the samples. Typically,
α = 0.8 to 0.9.

■ Set timeout to small multiple (2) of the estimate

Estimated Retransmit Timer

Retransmission ambiguity

● How do we distinguish first
ack from retransmitted ack?
■ First send to first ack?

– What if ack dropped?

■ Last send to last ack?
– What if last ack dropped?

● Might never be able to correct
too short timeout!

Timeout!

Retransmission ambiguity:
Solutions?

● TCP: Karn-Partridge
■ ignore RTT estimates for retransmitted pkts

■ double timeout on every retransmission

● Add sequence #’s to retransmissions
(retry #1, retry #2, …)

● TCP proposal: Add timestamp into
packet header; ack returns timestamp

Jacobson/Karels Algorithm

● Problem:
■ Variance in RTTs gets large as network gets loaded
■ Average RTT isn’t a good predictor when we need it

most

● Solution: Track variance too.
■ Difference = SampleRTT – EstimatedRTT
■ EstimatedRTT = EstimatedRTT + (δ x Difference)
■ Deviation = Deviation + δ(|Difference|- Deviation)
■ Timeout = µ x EstimatedRTT + φ x Deviation
■ In practice, δ = 1/8, µ = 1 and φ = 4

Estimate with Mean + Variance

Summary

● Transport layer (TCP) implements reliable, in
order packet delivery
■ retransmissions, sliding window, RTT est.

● Why not retransmit at link layer?
■ wireless: 802.11 implements ARQ
■ Ethernet, other link protocols implement CRC’s

● End to end principle: put functionality at
lowest layer it can be completely and correctly
implemented
■ lower layers can implement as optimization

