
CSE/EE 461 Lecture 11
Transport: Theory and Practice

Tom Anderson
tom@cs.washington.edu

Peterson, Chapter 2.5, 5.2

Transport Challenge

● IP: routers can be arbitrarily bad
■ packets can be lost, reordered, duplicated,

have limited size & can be fragmented

● TCP: applications need something better
■ reliable delivery, in order delivery, no

duplicates, arbitrarily long streams of data,
match sender/receiver speed, process-to-
process

Sliding Window:
Reliable, ordered delivery

● Two constraints:
■ Receiver can’t deliver packet to application until all

prior packets have arrived
■ Sender must prevent buffer overflow at receiver

● Solution: sliding window
■ circular buffer at sender and receiver

– packets in transit <= buffer size
– advance when sender and receiver agree packets at

beginning have been received

Sender/Receiver State

● sender
■ packets sent and acked (LAR = last ack recvd)
■ packets sent but not yet acked
■ packets not yet sent (LFS = last frame sent)

● receiver
■ packets received and acked (NFE = next frame

expected)
■ packets received out of order
■ packets not yet received (LFA = last frame ok)

Sliding Window

LAR LFS

Send Window

sent
acked

0 1 2
x x
x

x xx x x
3 4 5 6

NFE LFA

Receive Window

recvd
acked

0 1 2
x x
x

xx x x
3 4 5 6

x

Sender Algorithm (Go Back N)

Send full window, set timeout
On receiving an ack:

if it increases LAR (last ack received)
 send next packet(s)

-- no more than window size outstanding at once

else (already received this ack)
if receive multiple acks for LAR, next packet may have been

lost; retransmit LAR + 1; called “fast retransmit”

On timeout:
resend LAR + 1 (first packet not yet acked)

Receiver Algorithm (Go Back N)

On packet arrival:
if packet is the NFE (next frame expected)
 send ack
 increase NFE
 hand any packet(s) below NFE to application
else if < NFE (packet already seen and acked)
 send ack and discard
else (packet is > NFE, arrived out of order)
 buffer and send ack for NFE – 1

-- signal sender that NFE might have been lost

What if link is very lossy?

● Wireless packet loss rates can be 10-30%
■ end to end retransmission will still work
■ will be inefficient, especially with go back N

● Solution: hop by hop retransmission
■ performance optimization, not for correctness

● End to end principle
■ ok to do optimizations at lower layer
■ still need end to end retransmission; why?

Avoiding burstiness: ack pacing

Sender Receiver

bottleneck

packets

acks

Window size = round trip delay * bit rate

How many sequence #’s?

● Window size + 1?
■ Suppose window size = 3

■ Sequence space: 0 1 2 3 0 1 2 3

■ send 0 1 2, all arrive
– if acks are lost, resend 0 1 2
– if acks arrive, send new 3 0 1

● Window <= (max seq # + 1) / 2

How do we determine timeouts?

● If timeout too small, useless retransmits
■ can lead to congestion collapse (and did in 86)
■ as load increases, longer delays, more timeouts,

more retransmissions, more load, longer delays,
more timeouts …

● If timeout too big, inefficient
■ wait too long to send missing packet

● Timeout should be based on actual round trip
time (RTT)
■ varies with destination subnet, routing changes,

congestion, …

Estimating RTTs

● Idea: Adapt based on recent past measurements
■ For each packet, note time sent and time ack received
■ Compute RTT samples and average recent samples for

timeout
■ EstimatedRTT = α x EstimatedRTT + (1 - α) x

SampleRTT

■ This is an exponentially-weighted moving average (low
pass filter) that smoothes the samples. Typically,
α = 0.8 to 0.9.

■ Set timeout to small multiple (2) of the estimate

Estimated Retransmit Timer

Retransmission ambiguity

● How do we distinguish first
ack from retransmitted ack?
■ First send to first ack?

– What if ack dropped?

■ Last send to last ack?
– What if last ack dropped?

● Might never be able to fix too
short a timeout!

Timeout!

Retransmission ambiguity:
Solutions?

● TCP: Karn-Partridge
■ ignore RTT estimates for retransmitted pkts

■ double timeout on every retransmission

● Add sequence #’s to retransmissions
(retry #1, retry #2, …)

● TCP proposal: Add timestamp into
packet header; ack returns timestamp

Jacobson/Karels Algorithm

● Problem:
■ Variance in RTTs gets large as network gets loaded
■ Average RTT isn’t a good predictor when we need it

most

● Solution: Track variance too.
■ Difference = SampleRTT – EstimatedRTT
■ EstimatedRTT = EstimatedRTT + (δ x Difference)
■ Deviation = Deviation + δ(|Difference|- Deviation)
■ Timeout = µ x EstimatedRTT + φ x Deviation
■ In practice, δ = 1/8, µ = 1 and φ = 4

Estimate with Mean + Variance

Transport: Practice

● Protocols
■ IP -- Internet protocol

■ UDP -- user datagram protocol

■ TCP -- transmission control protocol

■ RPC -- remote procedure call

■ HTTP -- hypertext transfer protocol

How do we connect processes?

● IP provides host to host packet delivery
■ header has source, destination IP address

● For applications to communicate, need to
demux packets sent to host to target app
■ Web browser (HTTP), Email servers (SMTP),

hostname translation (DNS), RealAudio
player (RTSP), etc.

■ Process id is OS-specific and transient

Ports

● Port is a mailbox that processes “rent”
■ Uniquely identify communication endpoint as

(IP address, protocol, port)

● How do we pick port #’s?
■ Client needs to know port # to send server a request
■ Servers bind to “well-known” port numbers

– Ex: HTTP 80, SMTP 25, DNS 53, …
– Ports below 1024 reserved for “well-known” services

■ Clients use OS-assigned temporary (ephemeral)
ports

– Above 1024, recycled by OS when client finished

User Datagram Protocol (UDP)

● Provides application – application delivery

● Header has source & dest port #’s
■ IP header provides source, dest IP addresses

● Deliver to destination port on dest machine

● Reply returns to source port on source
machine

● No retransmissions, no sequence #s

=> stateless

Application
process

Application
process

Application
process

Packets arrive

Ports

Message
Queues

DeMux

UDP Delivery

Kernel
boundary

Transmission Control Protocol
(TCP)

● Reliable bi-directional byte stream
■ No message boundaries
■ Uses ports to identify application endpoints

● Sliding window, go back N, RTT est, …
■ Highly tuned congestion control algorithm

● Connection setup
■ negotiate buffer sizes and initial seq #s

● Flow control
■ prevent sender from overrunning receiver buffers

TCP Delivery

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

IP x.html IP TCP get inde

TCP Sliding Window

● Per-byte, not per-packet
■ send packet says “here are bytes j-k”
■ ack says “received up to byte k”

● Send buffer >= send window
■ can buffer writes in kernel before sending
■ writer blocks if try to write past send buffer

● Receive buffer >= receive window
■ buffer acked data in kernel, wait for reads
■ reader blocks if try to read past acked data

