
CSE/EE 461 Lecture 16
TCP Congestion Control

Tom Anderson
tom@cs.washington.edu

Peterson, Chapter 6

TCP Congestion Control

● Goal: efficiently and fairly allocate network
bandwidth
■ Robust RTT estimation
■ Additive increase/multiplicative decrease

– oscillate around bottleneck capacity

■ Slow start
– quickly identify bottleneck capacity

■ Fast retransmit
■ Fast recovery

TCP “Sawtooth”

● Oscillates around bottleneck bandwidth
■ adjusts to changes in competing traffic

Additive Increase/Multiplicative Decrease

0
2
4
6
8

10
12
14
16
18

0 3 6 9 12 15 18 21 24 27
round-trip times

window
(in segs)

Slow start

● How do we find bottleneck bandwidth?
■ Start by sending a single packet

– start slow to avoid overwhelming network

■ Multiplicative increase until get packet loss
– quickly find bottleneck

■ Remember previous max window size
– shift into linear increase/multiplicative decrease

when get close to previous max ~ bottleneck rate
– called “congestion avoidance”

Ack Pacing After Timeout

● Packet loss causes timeout,
disrupts ack pacing
■ slow start/additive increase are

designed to cause packet loss

● After loss, use slow start to
regain ack pacing
■ switch to linear increase at last

successful rate
■ “congestion avoidance”

1

2
3

4
5

1

1

1

1
1

2

5

T
i
m
e
o
u
t

Putting It All Together

● Timeouts dominate performance!

Slow Start + Congestion Avoidance

0

2

4

6

8

10

12

14

16

18

0 3 6 9 12 15 18 21 24 27 30 33 36 39round-trip times

window
(in segs)

Fast Retransmit

● Can we detect packet loss without
a timeout?
■ Receiver will reply to each packet with

an ack for last byte received in order

● Duplicate acks imply either
■ packet reordering (route change)
■ packet loss

● TCP Tahoe
■ resend if sender gets three duplicate

acks, without waiting for timeout

1

2
3

4
5

1

1

1

1
1

2

5

Fast Retransmit Caveats

● Assumes in order packet delivery
■ Recent proposal: measure rate of out of order

delivery; dynamically adjust number of dup acks
needed for retransmit

● Doesn’t work with small windows (e.g. modems)
■ what if window size <= 3

● Doesn’t work if many packets are lost
■ example: at peak of slow start, might lose many

packets

Fast Retransmit

● Regaining ack pacing limits performance

Slow Start + Congestion Avoidance
+ Fast Retransmit

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28round-trip times

window
(in segs)

Fast Recovery

● Use duplicate acks to maintain ack
pacing
■ duplicate ack => packet left network
■ after loss, send packet after every

other acknowledgement

● Doesn’t work if lose many packets
in a row
■ fall back on timeout and slow start to

reestablish ack pacing

1

2
3

4
5

1

1

1

1
1

2

3

Fast Recovery

Slow Start + Congestion Avoidance
+ Fast Retransmit + Fast Recovery

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24round-trip times

window
(in segs)

Delayed ACKS

● Problem:
■ In request/response programs, server will send

separate ACK and response packets
– computing the response can take time

● TCP solution:
■ Don’t ACK data immediately
■ Wait 200ms (must be less than 500ms)
■ Must ACK every other packet
■ Must not delay duplicate ACKs

Delayed Ack Impact

● TCP congestion control triggered by acks
■ if receive half as many acks => window

grows half as fast

● Slow start with window = 1
■ ack will be delayed, even though sender is

waiting for ack to expand window

What if two TCP connections
share link?

● Reach equilibrium independent of initial
bandwidth
■ assuming equal RTTs, “fair” drops at the router

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
round-trip times

window
(in segs)

Equilibrium Proof

S
e
n
d
i
n
g

R
a
t
e

f
o
r

A

Sending Rate for B

Link Bandwidth

Fair Allocation

x

What if TCP and UDP share link?

● Independent of initial rates, UDP will get
priority! TCP will take what’s left.

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18round-trip times

window
(in segs)

UDP
TCP

What if two different TCP
implementations share link?

● If cut back more slowly after drops => will
grab bigger share

● If add more quickly after acks => will grab
bigger share

● Incentive to cause congestion collapse!
■ Many TCP “accelerators”
■ Easy to improve perf at expense of network

● Solution: enforce good behavior at router

What if TCP connection is short?

● Slow start dominates performance
■ What if network is unloaded?
■ Burstiness causes extra drops

● Packet losses unreliable indicator
■ can lose connection setup packet
■ can get drop when connection near done
■ signal unrelated to sending rate

● In limit, have to signal every connection
■ 50% loss rate as increase # of connections

Example: 10KB document
10Mb/s Ethernet,70ms RTT, 536 MSS

● Ethernet ~ 10 Mb/s
● 64KB window, 70ms RTT ~ 7.5 Mb/s
● can only use 10KB window ~ 1.2 Mb/s
● 5% drop rate ~ 275 Kb/s (steady state)
● model timeouts ~ 228 Kb/s
● slow start, no losses ~ 140 Kb/s
● slow start, with 5% drop ~ 75 Kb/s

Short flow bandwidth

0
20
40
60
80

100
120
140

0 2.5 5 7.5 10 12.5 15
Packet loss rate (%)

B
an

d
w

id
th

 (K
b

p
s) median

average

Flow length=10Kbytes, RTT=70ms

Improving Short Flow Performance

● Start with a larger initial window
■ Proposed standard to start with 4 packets

● Persistent connections
■ HTTP: reuse TCP connection for multiple objects

on same page
■ Share congestion state between connections on

same host

● Dynamic initial window
■ Share congestion state between different hosts
■ Within a large server farm or a large client

population

Destination locality (UW)
Destination Host Locality

(time since host last accessed)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100Seconds

C
um

u
la

tiv
e

 F
ra

c
tio

n

All Flows

Inter-host only

Sharing Congestion Information

Internet
Subnet

Enterprise/Campus Network

Border Router

Congestion
Gateway

