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Multicast Packet Ordering

● Easy to order unicast packets => seq #s
● Easy to order multicast packets from a

single source => seq #s
● What if multiple sources?

■ Packets can arrive in different order at
different receivers

■ Is this bad?
■ If so, what can we do to fix it?



Multicast Ordering Example
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Example: Email Groups

A CB D
Meet for lunch?

Noon for what?

Meet at noon?

Confirmed!

Need to hold 
design review

Confirmed!

Oh, ok!

Anytime other 
than noon!



Multicast Total Ordering

● All packets are delivered in same order
everywhere

● Single seq # for all packets to group
■ every source sends packets to arbiter

■ arbiter assigns sequence #

■ if arbiter fails, elect new one

■ receivers don’t process packets out of order

Multicast Causal Ordering

● Total ordering inefficient for subcasts
● Instead, causal ordering

■ packets are never delivered before packets
that could have “caused” them

– receiver must have gotten all the packets
source has seen

■ packets that originate concurrently can be
delivered in any order



Implementing Causal Ordering

● Packets carry per-host sequence #
■ increment on each send

● Each host maintains a “version vector”
■ max seq #’s seen (in order) from each host

■ put version vector in each outgoing packet

● At receiver, delay packet until host
vector > packet vector, for all sources

Causal Ordering Example
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Multicast Congestion Control

● What if receivers have very different
bandwidths?

● Send at max?
● Send at min?
● Send at avg?
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Layered Multimedia

● Transmit signal at multiple granularities
■ 56Kb/s - voice only

■ 1Mb/s - choppy video

■ 100Mb/s - high quality video

● Layers can be
■ independent (redundant)

■ dependent (progressive refinement)



Receiver-Driven Layered Multicast

● Each layer a separate group
■ receiver subscribes to max group that will

get through with minimal drops

● Dynamically adapt to available capacity
■ use packet losses as congestion signal

● Assume no special router support
■ packets dropped independently of layer

How does receiver know which
layers to add?

● System dynamically adapts to available
capacity
■ Use packet drops as congestion signal

■ No drops => try subscribing to higher layer

■ Drops => unsubscribe to layer

● Alternative: ask the user



RLM Join

● Periodically, receivers try subscribing to higher
layer

● If enough capacity, no congestion, no drops
=> keep layer (& try next layer)

● If not enough capacity, congestion, drops
=> drop layer (& increase time to next retry)

● Coordination between receivers
■ use random delay and broadcast that join is in

progress, so that others don’t try at the same time
■ shared learning -> if neighbor join fails, wait longer

to try yourself

RLM Join Example
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Drop Policies for Layered Multicast

● Priority
■ prioritize low bandwidth layers

– drop packets for higher layers
– ex: everyone still gets audio, even if video degrades

■ requires router support for priorities

● Uniform (e.g., drop tail, RED)
■ packets arriving at congested router are dropped

regardless of their layer

● Which is better?

Intuition vs. Practice

● Intuition: priorities should be better
■ priority drops are less wasteful; always get

something useful through

● However, with RLM, uniform has
■ better incentives to well-behaved users

– if oversend, performance rapidly degrades

■ clearer congestion signal
– allows shared learning



Multicast Summary

● Multicast needed for efficiency, group
coordination

● Need to revisit all aspects of networking
■ Routing
■ Administration
■ Reliable delivery
■ Ordered delivery
■ Congestion control

Quality of Service

● What kinds of service do different applications
need?
■ Web is built on top of “best-effort” service
■ Other applications may need more

– Internet telephone service (voice over IP)
– streaming audio/video
– real-time games
– remote controlled robotic surgery

● What mechanisms do we need to support
these more demanding applications?
■ as with multicast, will need network to do more



IP Best Effort Service

● Our network model so far:
■ IP at routers: a shared, first come first serve

(drop tail) queue
■ TCP at hosts: probes for available

bandwidth, causing loss

● Router/host behavior determines the kind
of service applications will receive
■ TCP causes loss, along with variable delay,

variable bandwidth

● Playback is a real-time service
■ audio must be received by a deadline to be useful

● Real-time applications need assurances from
the network
■ What assurances does playback require?
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Sampler,
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An Audio Example

Variable bandwidth and delay (jitter)

Internet



Network Support for Playback

● Bandwidth
■ There must be enough on average
■ But we can tolerate to short term fluctuations

● Delay
■ Ideally it would be fixed
■ But we can tolerate some variation (jitter)

● Loss
■ Ideally there would be none
■ But we can tolerate some losses
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● Insert variable delay before playout to give time
for late samples to arrive
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Specifying Bandwidth Needs

● Problem: Many applications have variable demands

● Same average bandwidth, but very different needs over time
■ how do we describe bandwidth to the network?

Token Buckets

● Simple model
■ reflects both average,

variability over time

● Use tokens to send bits

● Avg bandwidth is R bps

● Maximum burst is B bits

Fill rate R 
tokens/sec

Bucket size
B tokens

Sending
drains
tokens


