
CSE/EE 461 Lecture 21
Multicast and QoS

Tom Anderson
tom@cs.washington.edu

Peterson, Chapter 4.4, 6.5

Multicast Packet Ordering

● Easy to order unicast packets => seq #s
● Easy to order multicast packets from a

single source => seq #s
● What if multiple sources?

■ Packets can arrive in different order at
different receivers

■ Is this bad?
■ If so, what can we do to fix it?

Multicast Ordering Example

s

s

g g

g

g

abc

xyzaxbycz

abxcyz

abcxyz

xyzabc

g

g

xaybzc

Example: Email Groups

A CB D
Meet for lunch?

Noon for what?

Meet at noon?

Confirmed!

Need to hold
design review

Confirmed!

Oh, ok!

Anytime other
than noon!

Multicast Total Ordering

● All packets are delivered in same order
everywhere

● Single seq # for all packets to group
■ every source sends packets to arbiter

■ arbiter assigns sequence #

■ if arbiter fails, elect new one

■ receivers don’t process packets out of order

Multicast Causal Ordering

● Total ordering inefficient for subcasts
● Instead, causal ordering

■ packets are never delivered before packets
that could have “caused” them

– receiver must have gotten all the packets
source has seen

■ packets that originate concurrently can be
delivered in any order

Implementing Causal Ordering

● Packets carry per-host sequence #
■ increment on each send

● Each host maintains a “version vector”
■ max seq #’s seen (in order) from each host

■ put version vector in each outgoing packet

● At receiver, delay packet until host
vector > packet vector, for all sources

Causal Ordering Example

A CB D

Confirmed!

11 am?

Anytime other
than 11am!

0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,0

Meet for lunch?

0,1,0,0

Need to hold
design review

0,0,0,1

Meet at noon?

0,1,1,0

How about noon?

Defer packet

Defer packet

Multicast Congestion Control

● What if receivers have very different
bandwidths?

● Send at max?
● Send at min?
● Send at avg?

R

R

R

S

100Mb/s

100Mb/s

100Mb/s

1Mb/s

1Mb/s

56Kb/s

R

Layered Multimedia

● Transmit signal at multiple granularities
■ 56Kb/s - voice only

■ 1Mb/s - choppy video

■ 100Mb/s - high quality video

● Layers can be
■ independent (redundant)

■ dependent (progressive refinement)

Receiver-Driven Layered Multicast

● Each layer a separate group
■ receiver subscribes to max group that will

get through with minimal drops

● Dynamically adapt to available capacity
■ use packet losses as congestion signal

● Assume no special router support
■ packets dropped independently of layer

How does receiver know which
layers to add?

● System dynamically adapts to available
capacity
■ Use packet drops as congestion signal

■ No drops => try subscribing to higher layer

■ Drops => unsubscribe to layer

● Alternative: ask the user

RLM Join

● Periodically, receivers try subscribing to higher
layer

● If enough capacity, no congestion, no drops
=> keep layer (& try next layer)

● If not enough capacity, congestion, drops
=> drop layer (& increase time to next retry)

● Coordination between receivers
■ use random delay and broadcast that join is in

progress, so that others don’t try at the same time
■ shared learning -> if neighbor join fails, wait longer

to try yourself

RLM Join Example

R4

R1

R3

S

100Mb/s

100Mb/s

100Mb/s

1Mb/s

1Mb/s

56Kb/s

R2

R4 joins layer 1,
fails at layer 2

R2,R3 join layer 1,
join layer 2

fails at layer 3

R1 joins layer 1,
joins layer 2
joins layer 3

Drop Policies for Layered Multicast

● Priority
■ prioritize low bandwidth layers

– drop packets for higher layers
– ex: everyone still gets audio, even if video degrades

■ requires router support for priorities

● Uniform (e.g., drop tail, RED)
■ packets arriving at congested router are dropped

regardless of their layer

● Which is better?

Intuition vs. Practice

● Intuition: priorities should be better
■ priority drops are less wasteful; always get

something useful through

● However, with RLM, uniform has
■ better incentives to well-behaved users

– if oversend, performance rapidly degrades

■ clearer congestion signal
– allows shared learning

Multicast Summary

● Multicast needed for efficiency, group
coordination

● Need to revisit all aspects of networking
■ Routing
■ Administration
■ Reliable delivery
■ Ordered delivery
■ Congestion control

Quality of Service

● What kinds of service do different applications
need?
■ Web is built on top of “best-effort” service
■ Other applications may need more

– Internet telephone service (voice over IP)
– streaming audio/video
– real-time games
– remote controlled robotic surgery

● What mechanisms do we need to support
these more demanding applications?
■ as with multicast, will need network to do more

IP Best Effort Service

● Our network model so far:
■ IP at routers: a shared, first come first serve

(drop tail) queue
■ TCP at hosts: probes for available

bandwidth, causing loss

● Router/host behavior determines the kind
of service applications will receive
■ TCP causes loss, along with variable delay,

variable bandwidth

● Playback is a real-time service
■ audio must be received by a deadline to be useful

● Real-time applications need assurances from
the network
■ What assurances does playback require?

Microphone

Speaker

Sampler,
A D

converter

Buffer,
D A

An Audio Example

Variable bandwidth and delay (jitter)

Internet

Network Support for Playback

● Bandwidth
■ There must be enough on average
■ But we can tolerate to short term fluctuations

● Delay
■ Ideally it would be fixed
■ But we can tolerate some variation (jitter)

● Loss
■ Ideally there would be none
■ But we can tolerate some losses

1

2

3

P
ac

ke
ts

 (
%

)

90% 97% 98% 99%

150 20010050

Delay (milliseconds)

Example: Delay and Jitter

● Insert variable delay before playout to give time
for late samples to arrive

S
eq

ue
nc

e
nu

m
be

r

Packet
generation

Network
delay

Buffer

Playback

Time

Packet
arrival

Tolerating Jitter with Buffering

Taxonomy of Applications

Applications

Real time

Tolerant

Adaptive Nonadaptive

Delay
adaptive

Rate
adaptive

Intolerant

Rate
adaptive

Nonadaptive

Interactive Interactive
bulk

Asynchronous

Elastic

1 2 3 4

1

2
Flow B

Flow A

Time (seconds)

B
an

dw
id

th
 (

M
B

ps
)

Specifying Bandwidth Needs

● Problem: Many applications have variable demands

● Same average bandwidth, but very different needs over time
■ how do we describe bandwidth to the network?

Token Buckets

● Simple model
■ reflects both average,

variability over time

● Use tokens to send bits

● Avg bandwidth is R bps

● Maximum burst is B bits

Fill rate R
tokens/sec

Bucket size
B tokens

Sending
drains
tokens

