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Supporting QOS Guarantees

• Flowspecs. Formulate application needs
■ Need descriptor (token bucket) for guarantee

• Admission Control. Decide whether to support a new
guarantee
■ Network must be able to control load to provide guarantees

• Signaling. Reserve network resources at routers
■ Analogous to connection setup/teardown, for router

reservations

• Packet Scheduling. Implement guarantees
■ Various mechanisms can be used, e.g., explicit schedule,

priorities, WFQ, …



Token Buckets

● Simple model
■ reflects both average,

variability over time

● Use tokens to send bits

● Avg bandwidth is R bps

● Maximum burst is B bits
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RSVP Issues

● RSVP is receiver-driven to be able to support
multicast applications

● Only reserve resources at a router if there are
sufficient resources along the entire path
■ both for average bandwidth and maximum bursts

● What if there are link failures and the route
changes?
■ receivers periodically refresh by sending new

requests toward sender

● What if there are sender/receiver failures?
■ reservations are periodically timed out

IETF Integrated Services

● Fine-grained (per flow) guarantees
■ Guaranteed service (bandwidth and bounded delay)
■ Controlled load (bandwidth but variable delay)

● RSVP used to reserve resources at routers
■ Receiver-based signaling that handles failures
■ Router can police that flow obeys reservation

● Priorities, WFQ used to implement guarantees
■ Router classifies packets into a flow as they arrive
■ Packets are scheduled using the flow’s resources
■ Flows with guaranteed service scheduled before

controlled load, scheduled before best effort



IETF Differentiated Services

● A coarse-grained approach to QOS
■ Packets are marked as belonging to a small set of

services, e.g, premium or best-effort, using the TOS
bits in the IP header

● Marking policed at administrative boundaries
■ ISP marks 10Mbps (say) of your traffic as premium

depending on your service level agreement (SLAs)

● Routers understand only the different service
classes, not individual reservations
■ Use priority queues or WFQ for each class, not for

each flow

Two-Tiered Architecture
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Security

● Networks are shared
■ each packet traverses many devices on path from

source to receiver
■ how do you know messages aren’t copied,

replaced/spoofed, modified in flight, …

● Security Goals
■ Privacy: messages can’t be eavesdropped
■ Authentication: messages were sent by the right

party
■ Integrity: messages can’t be tampered with

Encryption

● Cryptographer chooses functions E, D and keys
KE, KD

■ Suppose everything is known (E, D, M and C), should
not be able to determine keys KE, KD and/or modify msg

■ provides basis for authentication, privacy and integrity
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Secret Key (DES, IDEA)

● Single key (symmetric) is shared between
parties, kept secret from everyone else
■ Ciphertext = (M)^K; Plaintext = M = ((M)^K)^K
■ if K kept secret, then both parties know M is

authentic and secret
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Public Key (RSA, PGP)

● Keys come in pairs, public and private
■ Each entity (user, host, router,…) gets its own pair
■ Public key can be published; private is secret to entity

– can’t derive K-private from K-public, even given M, (M)^K-priv

■ Ciphertext = (M)^K-public; M = ((M)^K-public)^K-private
■ Ensures privacy: can only be read by receiver
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Public Key: Authentication

● Keys come in pairs, public and private
■ M = ((M)^K-private)^K-public
■ Ensures authentication: can only be sent by sender
■ Get both authentication and secrecy, by encrypting

in private key of sender, public key of receiver
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Public Keys and Smart Cards

● Can be difficult for people to remember
encryption keys
■ keys that are easy to remember, are easier to break
■ keys that aren’t easy to break, can’t be remembered!

● Instead, store K-private inside a chip
■ use challenge-response to authenticate smart card
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Public Key -> Session Key

● Public key encryption/decryption is slow; so can use
public key to establish (shared) session key

■ assume both sides know each other’s public key

((K,y,x+1)^C-public)^S-priv
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(y+1)^K

client
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Public Key Distribution

● How do we know public key of other side?
■ infeasible for every host to know everyone’s key
■ need public key infrastructure (PKI)

● Certificates (X.509)
■ Distribute keys by trusted certificate authority (CA)

– “I swear X’s public key is Y”, signed by CA (their private key)

■ Example CA’s: Verisign, Microsoft, UW CS Dept., …

● How do we know public key of CA?
■ Can build chains of trust, e.g., given public key of UW

CS’s CA, who can sign for Verisign’s public key, who
can sign for xyz’s public key



Public Key Revocation

● What if a private key is compromised?
■ need certificate revocation list (CRL)

– and a CRL authority for serving the list

■ everyone using a certificate is responsible
for checking to see if it is on CRL

■ ex: certificate can have two timestamps
– one long term, when certificate times out
– one short term, when CRL must be checked
– CRL is online, CA can be offline

Shared Key -> Session Key

● In shared key systems, how do we gain
a shared key with other side?
■ infeasible for everyone to share a secret

with everyone else
■ solution: “authentication server” (Kerberos)

– everyone shares (a separate) secret with server
– server provides shared session key for A <-> B

■ everyone trusts authentication server
– if compromise server, can do anything!



Kerberos Example
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Kerberos Details

● Any key can be broken if given a long enough
time
■ Use timestamps to ensure that keys were created

recently

● Need to ensure attacker doesn’t change
messages in flight
■ ex: replace parts of message
■ use encrypted checksum on entire message

● Passwords are often easily broken
■ Derive Ksa from A’s password
■ Use Ksa to establish temporary key, Ksa-temp



Message Digests (MD5, SHA)

● Cryptographic checksum: message integrity
■ Typically small compared to message (MD5 128 bits)
■ “One-way”: infeasible to find two messages with

same digest
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Example Systems

● Cryptography can be applied at multiple layers

● Pretty Good Privacy (PGP)
■ For authentic and confidential email

● Secure Sockets (SSL) and Secure HTTP
(HTTPS)
■ For secure Web transactions

● IP Security (IPSEC)
■ Framework for encrypting/authenticating IP packets



PGP

● Application level system
● Based on public keys and a “grass roots” Web

of trust
● Sign messages for integrity/authenticity

■ Encrypt with private key of sender

● Encrypt messages for privacy
■ Could just use public key of receiver …
■ But encrypt message with secret key, and secret

key with public key of receiver to boost
performance

SSL/TLS and HTTPS

● Secure transport layer targeted at Web transactions
■ SSL/TLS inserted between TCP and HTTP to make secure HTTP

● Extra handshake phase to authenticate and exchange
shared session keys

■ Client might authenticate Web server but not vice-versa
– Certificate Authority embedded in Web browser

● Performance optimization
■ Refer to shared state with session id
■ Can use same parameters across connections

– Client sends session id, allowing server to skip handshake



IPSEC

● Framework for encrypted IP packets
■ Choice of algorithms not specified

● Uses new protocol headers inside IPv4 packets
■ Authentication header

– For message integrity and origin authenticity
– Optionally “anti-replay” protection (via sequence number)

■ Encapsulating Security Payload
– Adds encryption for privacy

● Depends on key distribution (ISAKAMP)
■ Sets up security associations

● Ex: secure tunnels between corporate offices

Filter-based Firewalls

● Sit between site and rest of Internet, filter packets
■ Enforce site policy in a manageable way
■ e.g. pass (*,*, 128.7.6.5, 80 ), then drop (*, *, *, 80)
■ Rules may be added dynamically to pass new

connections

● Sometimes bundled with a router: “level 4” switch
■ Acts like a router (accepts and forwards packets)
■ Looks at information up to TCP port numbers (layer 4)

Rest of the Internet Local siteFirewall



Proxy-Based Firewalls

● Problem: Filter ruleset can be complex/insufficient
■ Adequate filtering may require application knowledge
■ Example: email virus signature

● Run proxies for Web, mail, etc. just outside firewall
■ External requests go to proxies, only proxies connect

inside
– External user may or may not know this is happening

■ Proxies filter based on application semantics
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