
CSE/EE 461 Lecture 23
QoS Wrapup; Security

Tom Anderson
tom@cs.washington.edu

Peterson, Chapter 8

Supporting QOS Guarantees

• Flowspecs. Formulate application needs
■ Need descriptor (token bucket) for guarantee

• Admission Control. Decide whether to support a new
guarantee
■ Network must be able to control load to provide guarantees

• Signaling. Reserve network resources at routers
■ Analogous to connection setup/teardown, for router

reservations

• Packet Scheduling. Implement guarantees
■ Various mechanisms can be used, e.g., explicit schedule,

priorities, WFQ, …



Token Buckets

● Simple model
■ reflects both average,

variability over time

● Use tokens to send bits

● Avg bandwidth is R bps

● Maximum burst is B bits

Fill rate R 
tokens/sec

Bucket size
B tokens

Sending
drains
tokens

Resource Reservation Protocol
(RSVP)

R

R

R

R

R

Sender 1

Sender 2

PATH

PATH

RESV
(merged)

RESV

RESV

Receiver B

Receiver A



RSVP Issues

● RSVP is receiver-driven to be able to support
multicast applications

● Only reserve resources at a router if there are
sufficient resources along the entire path
■ both for average bandwidth and maximum bursts

● What if there are link failures and the route
changes?
■ receivers periodically refresh by sending new

requests toward sender

● What if there are sender/receiver failures?
■ reservations are periodically timed out

IETF Integrated Services

● Fine-grained (per flow) guarantees
■ Guaranteed service (bandwidth and bounded delay)
■ Controlled load (bandwidth but variable delay)

● RSVP used to reserve resources at routers
■ Receiver-based signaling that handles failures
■ Router can police that flow obeys reservation

● Priorities, WFQ used to implement guarantees
■ Router classifies packets into a flow as they arrive
■ Packets are scheduled using the flow’s resources
■ Flows with guaranteed service scheduled before

controlled load, scheduled before best effort



IETF Differentiated Services

● A coarse-grained approach to QOS
■ Packets are marked as belonging to a small set of

services, e.g, premium or best-effort, using the TOS
bits in the IP header

● Marking policed at administrative boundaries
■ ISP marks 10Mbps (say) of your traffic as premium

depending on your service level agreement (SLAs)

● Routers understand only the different service
classes, not individual reservations
■ Use priority queues or WFQ for each class, not for

each flow

Two-Tiered Architecture

Mark at Edge routers
(per flow state,

complex)

Core routers
stay simple

(no per-flow state,
few classes)



Security

● Networks are shared
■ each packet traverses many devices on path from

source to receiver
■ how do you know messages aren’t copied,

replaced/spoofed, modified in flight, …

● Security Goals
■ Privacy: messages can’t be eavesdropped
■ Authentication: messages were sent by the right

party
■ Integrity: messages can’t be tampered with

Encryption

● Cryptographer chooses functions E, D and keys
KE, KD

■ Suppose everything is known (E, D, M and C), should
not be able to determine keys KE, KD and/or modify msg

■ provides basis for authentication, privacy and integrity

Sender
Plaintext (M)

Encrypt
E(M,KE)

Ciphertext (C)

Receiver
Plaintext (M)

Decrypt
D(C, KD)



Secret Key (DES, IDEA)

● Single key (symmetric) is shared between
parties, kept secret from everyone else
■ Ciphertext = (M)^K; Plaintext = M = ((M)^K)^K
■ if K kept secret, then both parties know M is

authentic and secret

Plaintext

Encrypt with
secret key

Ciphertext

Plaintext

Decrypt with
secret key

Public Key (RSA, PGP)

● Keys come in pairs, public and private
■ Each entity (user, host, router,…) gets its own pair
■ Public key can be published; private is secret to entity

– can’t derive K-private from K-public, even given M, (M)^K-priv

■ Ciphertext = (M)^K-public; M = ((M)^K-public)^K-private
■ Ensures privacy: can only be read by receiver

Plaintext

Encrypt with
public key

Secret Ciphertext

Plaintext

Decrypt with
private key



Public Key: Authentication

● Keys come in pairs, public and private
■ M = ((M)^K-private)^K-public
■ Ensures authentication: can only be sent by sender
■ Get both authentication and secrecy, by encrypting

in private key of sender, public key of receiver

Plaintext

Encrypt with
PRIVATE key

Authentic ciphertext

Plaintext

Decrypt with
PUBLIC key

Public Keys and Smart Cards

● Can be difficult for people to remember
encryption keys
■ keys that are easy to remember, are easier to break
■ keys that aren’t easy to break, can’t be remembered!

● Instead, store K-private inside a chip
■ use challenge-response to authenticate smart card

a

challenge: x

response:

(x+1)^K-pr
ivate

smartcard



Public Key -> Session Key

● Public key encryption/decryption is slow; so can use
public key to establish (shared) session key

■ assume both sides know each other’s public key

((K,y,x+1)^C-public)^S-priv

client serverclient ID, x

(y+1)^K

client
authenticates

server
server

authenticates
client

Public Key Distribution

● How do we know public key of other side?
■ infeasible for every host to know everyone’s key
■ need public key infrastructure (PKI)

● Certificates (X.509)
■ Distribute keys by trusted certificate authority (CA)

– “I swear X’s public key is Y”, signed by CA (their private key)

■ Example CA’s: Verisign, Microsoft, UW CS Dept., …

● How do we know public key of CA?
■ Can build chains of trust, e.g., given public key of UW

CS’s CA, who can sign for Verisign’s public key, who
can sign for xyz’s public key



Public Key Revocation

● What if a private key is compromised?
■ need certificate revocation list (CRL)

– and a CRL authority for serving the list

■ everyone using a certificate is responsible
for checking to see if it is on CRL

■ ex: certificate can have two timestamps
– one long term, when certificate times out
– one short term, when CRL must be checked
– CRL is online, CA can be offline

Shared Key -> Session Key

● In shared key systems, how do we gain
a shared key with other side?
■ infeasible for everyone to share a secret

with everyone else
■ solution: “authentication server” (Kerberos)

– everyone shares (a separate) secret with server
– server provides shared session key for A <-> B

■ everyone trusts authentication server
– if compromise server, can do anything!



Kerberos Example

A

Server

B

I’
d 
li
ke
 a
 k
ey
 f
or
 A
<-
>B

(K
ab
,(
A<
->
B,
 K
ab
)^
Ks
b)
Ks
a

(A<->B, Kab)^Ksb

Kerberos Details

● Any key can be broken if given a long enough
time
■ Use timestamps to ensure that keys were created

recently

● Need to ensure attacker doesn’t change
messages in flight
■ ex: replace parts of message
■ use encrypted checksum on entire message

● Passwords are often easily broken
■ Derive Ksa from A’s password
■ Use Ksa to establish temporary key, Ksa-temp



Message Digests (MD5, SHA)

● Cryptographic checksum: message integrity
■ Typically small compared to message (MD5 128 bits)
■ “One-way”: infeasible to find two messages with

same digest

Transform

Initial digest Message (padded)

Transform

Message digest

512 bits 512 bits 512 bits

…

…

Transform

Example Systems

● Cryptography can be applied at multiple layers

● Pretty Good Privacy (PGP)
■ For authentic and confidential email

● Secure Sockets (SSL) and Secure HTTP
(HTTPS)
■ For secure Web transactions

● IP Security (IPSEC)
■ Framework for encrypting/authenticating IP packets



PGP

● Application level system
● Based on public keys and a “grass roots” Web

of trust
● Sign messages for integrity/authenticity

■ Encrypt with private key of sender

● Encrypt messages for privacy
■ Could just use public key of receiver …
■ But encrypt message with secret key, and secret

key with public key of receiver to boost
performance

SSL/TLS and HTTPS

● Secure transport layer targeted at Web transactions
■ SSL/TLS inserted between TCP and HTTP to make secure HTTP

● Extra handshake phase to authenticate and exchange
shared session keys

■ Client might authenticate Web server but not vice-versa
– Certificate Authority embedded in Web browser

● Performance optimization
■ Refer to shared state with session id
■ Can use same parameters across connections

– Client sends session id, allowing server to skip handshake



IPSEC

● Framework for encrypted IP packets
■ Choice of algorithms not specified

● Uses new protocol headers inside IPv4 packets
■ Authentication header

– For message integrity and origin authenticity
– Optionally “anti-replay” protection (via sequence number)

■ Encapsulating Security Payload
– Adds encryption for privacy

● Depends on key distribution (ISAKAMP)
■ Sets up security associations

● Ex: secure tunnels between corporate offices

Filter-based Firewalls

● Sit between site and rest of Internet, filter packets
■ Enforce site policy in a manageable way
■ e.g. pass (*,*, 128.7.6.5, 80 ), then drop (*, *, *, 80)
■ Rules may be added dynamically to pass new

connections

● Sometimes bundled with a router: “level 4” switch
■ Acts like a router (accepts and forwards packets)
■ Looks at information up to TCP port numbers (layer 4)

Rest of the Internet Local siteFirewall



Proxy-Based Firewalls

● Problem: Filter ruleset can be complex/insufficient
■ Adequate filtering may require application knowledge
■ Example: email virus signature

● Run proxies for Web, mail, etc. just outside firewall
■ External requests go to proxies, only proxies connect

inside
– External user may or may not know this is happening

■ Proxies filter based on application semantics

Company netFirewall Web
server

Random
external
user

Remote
company
user

Internet Proxy

DMZ


