
CSE/EE 461 Lecture 24
Security Theory and Practice

Tom Anderson
tom@cs.washington.edu

Peterson, Chapter 8

Secret Key, Public Key

● Encrypt messages for secrecy, authentication,
message integrity

● Secret Key encryption
■ Single key (symmetric) is shared between parties,

kept secret from everyone else
– Ciphertext = (M)^K; Plaintext = M = ((M)^K)^K

● Public Key encryption
■ Keys come in pairs, public and private

– Ciphertext = (M)^K-public; M = ((M)^K-public)^K-private
– Ciphertext = (M)^K-private; M = ((M)^K-private)^K-public

■ Get both authentication and secrecy, by encrypting
in private key of sender, public key of receiver

Public Key -> Session Key

● Public key encryption/decryption is slow; so can use
public key to establish (shared) session key

■ assume both sides know each other’s public key

((K,y,x+1)^C-public)^S-priv

client serverclient ID, x

(y+1)^K

client
authenticates

server
server

authenticates
client

Public Key Distribution

● How do we know public key of other side?
■ infeasible for every host to know everyone’s key
■ need public key infrastructure (PKI)

● Certificates (X.509)
■ Distribute keys by trusted certificate authority (CA)

– “I swear X’s public key is Y”, signed by CA (their private key)

■ Example CA’s: Verisign, Microsoft, UW CS Dept., …

● How do we know public key of CA?
■ Can build chains of trust, e.g., given public key of UW

CS’s CA, who can sign for Verisign’s public key, who
can sign for xyz’s public key

Public Key Revocation

● What if a private key is compromised?
■ need certificate revocation list (CRL)

– and a CRL authority for serving the list

■ everyone using a certificate is responsible
for checking to see if it is on CRL

■ ex: certificate can have two timestamps
– one long term, when certificate times out
– one short term, when CRL must be checked
– CRL is online, CA can be offline

Shared Key -> Session Key

● In shared key systems, how do we gain
a shared key with other side?
■ infeasible for everyone to share a secret

with everyone else
■ solution: “authentication server” (Kerberos)

– everyone shares (a separate) secret with server
– server provides shared session key for A <-> B

■ everyone trusts authentication server
– if compromise server, can do anything!

Kerberos Example

A

Server

B

I’
d
li
ke
 a
 k
ey
 f
or
 A
<-
>B

(K
ab
,(
A<
->
B,
 K
ab
)^
Ks
b)
Ks
a

(A<->B, Kab)^Ksb

Kerberos Details

● Any key can be broken if given a long enough
time
■ Use timestamps to ensure that keys were created

recently

● Need to ensure attacker doesn’t change
messages in flight
■ ex: replace parts of message
■ use encrypted checksum on entire message

● Passwords are often easily broken
■ Derive Ksa from A’s password
■ Use Ksa to establish temporary key, Ksa-temp

Message Digests (MD5, SHA)

● Cryptographic checksum: message integrity
■ Typically small compared to message (MD5 128 bits)
■ “One-way”: infeasible to find two messages with

same digest

Transform

Initial digest Message (padded)

Transform

Message digest

512 bits 512 bits 512 bits

…

…

Transform

Example Systems

● Cryptography can be applied at multiple layers

● Pretty Good Privacy (PGP)
■ For authentic and confidential email

● Secure Sockets (SSL) and Secure HTTP (HTTPS)
■ For secure Web transactions

● IP Security (IPSEC)
■ Framework for encrypting/authenticating IP packets

PGP

● Application level system
● Based on public keys and a “grass roots” Web

of trust
● Sign messages for integrity/authenticity

■ Encrypt with private key of sender

● Encrypt messages for privacy
■ Could just use public key of receiver …
■ But encrypt message with secret key, and secret

key with public key of receiver to boost
performance

SSL/TLS and HTTPS

● Secure transport layer targeted at Web transactions
■ SSL/TLS inserted between TCP and HTTP to make secure HTTP

● Extra handshake phase to authenticate and exchange
shared session keys

■ Client might authenticate Web server but not vice-versa
– Certificate Authority embedded in Web browser

● Performance optimization
■ Refer to shared state with session id
■ Can use same parameters across connections

– Client sends session id, allowing server to skip handshake

IPSEC

● Framework for encrypted IP packets
■ Choice of algorithms not specified

● Uses new protocol headers inside IPv4 packets
■ Authentication header

– For message integrity and origin authenticity
– Optionally “anti-replay” protection (via sequence number)

■ Encapsulating Security Payload
– Adds encryption for privacy

● Depends on key distribution (ISAKAMP)
■ Sets up security associations

● Ex: secure tunnels between corporate offices

Filter-based Firewalls

● Sit between site and rest of Internet, filter packets
■ Enforce site policy in a manageable way
■ e.g. pass (*,*, 128.7.6.5, 80), then drop (*, *, *, 80)
■ Rules may be added dynamically to pass new

connections

● Sometimes bundled with a router: “level 4” switch
■ Acts like a router (accepts and forwards packets)
■ Looks at information up to TCP port numbers (layer 4)

Rest of the Internet Local siteFirewall

Proxy-Based Firewalls

● Problem: Filter ruleset can be complex/insufficient
■ Adequate filtering may require application knowledge
■ Example: email virus signature

● Run proxies for Web, mail, etc. just outside firewall
■ External requests go to proxies, only proxies connect

inside
– External user may or may not know this is happening

■ Proxies filter based on application semantics

Company netFirewall Web
server

Random
external
user

Remote
company
user

Internet Proxy

DMZ

Security Practice

● In practice, systems are not that secure
■ hackers can go after weakest link

– any system with bugs is vulnerable

■ vulnerability often not anticipated
– usually not a brute force attack against encryption system

■ often can’t tell if system is compromised
– hackers can hide their tracks

■ can be hard to resecure systems after a breakin
– hackers can leave unknown backdoors

Two Old Examples

● Secure computer deep in Pentagon
■ Tiger team asked to see if they could break in

– given all specs, source code, etc.
– no physical access

■ Hacked into the system in < a week

● Secure communications channel: one time pad
■ paper tape of random #’s; same tape used at sender,

receiver
■ system XOR random # to each bit before xmit
■ operational practice made system very insecure

Password Dictionary Attacks

● Moore’s Law: brute force attacks become
cheaper over time

● UNIX passwords: time to check all 5 letter
passwords (lower case): 26^5 ~ 10M
■ in 75, 1 day
■ in 92, 10 seconds
■ in 02, 0.01 seconds

● Extend password to six letters, require upper,
lower, number, control char: 70^6 ~ 600B
■ in 92, 6 days
■ in 02, with 100 PC’s in parallel, < 1 minute (!)

Trojan Horse

● Can you trust your login prompt?
■ did the person before you really log out? how do you

know?

● Can you trust your web browser?
■ what if someone modified the installed version to

capture your password?
■ did you download the browser over the web? how do

you know it didn’t get modified in flight?

● Can you trust your email?
■ how do you know the sender sent the mail? that it

wasn’t modified?

Kerberos Weaknesses

● Early versions of Kerberos had several security
flaws
■ block cipher: allowed encrypted blocks to be replaced

– A -> B (transfer $10 to Tom’s account)
– A -> B (transfer $1M to Wells Fargo)
– solution: add encrypted CRC over entire message

■ used timestamps to verify communication was recent
– time server communication not encrypted
– get time from authentication server

■ Kerberos login program downloaded over NFS
– NFS authenticates requests, but data is unencrypted
– disallow diskless operation

802.11 Weaknesses

● Ports often installed behind the firewall
■ anyone can listen, send packets on intranet

● Weak encryption method
■ uses 40 bit key, 32 bit initial #
■ most implementations use same initial #, allowing

dictionary, replay attacks

● Key management overhead
■ single key used for all senders on a LAN; often disabled

● Uses parity instead of CRC for integrity
■ allows block replacements that maintain parity

Internet Worm

● Used the Internet to infect a large number of
machines in 88
■ password dictionary
■ sendmail bug

– default configuration allowed debug access
– well known for several years, but not fixed

■ fingerd: finger tom@cs
– fingerd allocated fixed size buffer on stack
– copied string into buffer without checking length
– encode virus into string!

● Used infected machines to find/infect others

Ping of Death

● IP packets can be fragmented, reordered in
flight

● Reassembly at host
■ can get fragments out of order, so host allocates

buffer to hold fragments

● Malformed IP fragment possible
■ offset + length > max packet size
■ Kernel implementation didn’t check

● Was used for denial of service, but could have
been used for virus propagation

TCP/DNS Hijacking

● Example: Mitnick
■ denial of service attack against system administrator

– open large number of TCP connections

■ scan for open, idle TCP connections (e.g., rlogin,
xwindows)

– send bogus TCP packets to other end, e.g., to modify .rhosts
to allow mitnick access

● Example: DNS cache poisoning
■ watch DNS cache for when it fetches new translation

– e.g., for cnn.com

■ spoof reply to poison cache to point to bogus server

Netscape

● Used time of day to pick session key
■ easy to predict, break

● Offered replacement browser code for
download over Web
■ four byte change to executable made it use

attacker’s key

● Buggy helper applications (ex: ghostview)
■ if web site hosts infected content, can infect clients

that browse to it

Microsoft

● Browser runs Java, supposedly “safe”
■ random byte code generation found

numerous bugs that caused crashes

■ many could be used to covertly insert
viruses

● Email viruses: Melissa, etc.
■ Attachments can run code that is poorly

sandboxed

Code Red/Nimda

● Dictionary attack of known vulnerabilities
■ email attachments, Microsoft web server bugs,

browser helper applications, …
■ used infected machines to infect new machines

● Code Red:
■ designed to cause all machines to access

whitehouse.gov simultaneously

● Nimda:
■ Left open backdoor on infected machines for any use
■ Sysadmins could monitor virus propagation to

located infected machines
■ Infected ~ 400K machines; approx ~30K still infected

