
CSE/EE 461 Lecture 6
 Routing

Tom Anderson
tom@cs.washington.edu

Roadmap

LAN vs. Internet routing
■ MAC vs. IP addresses

Forwarding mechanisms
■ Source routing
■ Global addresses
■ Virtual circuits

● Routing algorithms
■ spanning tree
■ distance vector
■ link state

Forwarding Mechanics Example

A

B

C D

H

G
F

E

v

w

z

x

y

Virtual Circuits (ATM, MPLS)

● Each connection has destination address;
each packet has virtual circuit ID (VCI)

● Each switch has forwarding table of
connection -> next hop
■ at connection setup, allocate virtual circuit ID (VCI)

at each switch in path
■ (input #, input VCI) -> (output #, output VCI)

– At v: (west=A, 12) -> (east=w, 2)
– At w: (west=v, 2) -> (south=y, 7)
– At y: (north=w, 7) -> (south=F, 4)

Virtual Circuits

● Advantages
■ more efficient lookup (smaller tables)

■ more flexible (different path for each circuit)

■ can reserve bandwidth at connection setup

● Disadvantages
■ still need to route connection setup request

■ more complex failure recovery

Comparison

Source
routing

Global
addresses

Virtual
circuits

Header
size

worst OK ~ large
addrs

best

Router
table size

none # of hosts
(prefixes)

of
circuits

Forward
overhead

best Prefix
matching

Pretty
good

Setup
overhead

none none Same as
global addr
forwarding

Error
recovery

Tell all
hosts

Tell all
routers

Tear down
circuit and
reroute

Routing Questions

● How to choose best path?
■ Defining “best” is slippery

● How to scale to billions of hosts?
■ Minimize control messages and routing table size

● How to adapt to failures or changes?
■ Node and link failures, plus message loss
■ We will use distributed algorithms

● Use global or local knowledge?
■ Inconsistencies can cause loops and oscillations

● Routing is essentially a problem in graph theory
■ switches = nodes; links = edges; delay/hops = cost

● Need dynamic computation to adapt to changes

a

D

G

A

F

E

B

C
=router

=link

Network as a Graph

X

1
1

1

1

1

1

1

1
1 =cost

Routing Alternatives

● Spanning Tree (Ethernet)
■ Convert graph into a tree; route only along tree

● Distance vector (RIP, BGP)
■ exchange routing tables with neighbors
■ no one knows complete topology

● Link state (OSPF)
■ send everyone your neighbors
■ everyone computes shortest path

Spanning Tree Example

Convert graph
into a tree;
route only
along the
tree

Simple and
avoids loops

B3

A

C

E

D
B2

B5

B

B7 K

F

H

B4

J

B1

B6

G

I

Spanning Tree Algorithm

● Distributed algorithm to compute spanning
tree
■ Robust against failures, needs no organization

● Outline:
– Elect a root node of the tree (lowest address)
– Grow tree as shortest distances from the root

(using lowest address to break distance ties)

Algorithm

● Bridges periodically exchange config messages
■ Contain: best root seen, distance to root, bridge address

● Initially, each bridge thinks it is the root
■ Each bridge tells its neighbors its address

● On receiving a config message, update position in tree
■ Pick smaller root address, then
■ Shorter distance to root, then
■ Bridge with smaller address

● Periodically update neighbors
■ Add one to distance to root, send downstream

● Turn off forwarding on ports except those that
send/receive “best”

Algorithm Example

● Message format: (root, dist to root, bridge)
● Sample messages sequences to and from B3:

– B3 sends (B3, 0, B3) to B2 and B5
– B3 receives (B2, 0, B2) and (B5, 0, B5) and accepts B2 as root
– B3 sends (B2, 1, B3) to B5
– B3 receives (B1, 1, B2) and (B1, 1, B5) and accepts B1 as root
– B3 wants to send (B1, 2, B3) but doesn’t as its nowhere “best”
– B3 receives (B1, 1, B2) and (B1, 1, B5) again … stable
– Data forwarding is turned off to A

Some other details

● Configuration information is aged
■ If the root fails a new one will be elected

● Reconfiguration is damped
■ Adopt new spanning trees slowly to avoid

temporary loops

Distance Vector Routing

● Each router periodically exchanges messages with
neighbors

■ best known distance to each destination (“distance vector”)

● Initially, can get to self with 0 cost
● On receipt of update from neighbor, for each destination

■ switch forwarding tables to neighbor if it has cheaper route
■ update best known distance
■ tell neighbors of any changes

● Absent topology changes, will converge to shortest path

DV Example: Initial Table at A

-∞G

-∞F

-∞E

-∞D

-∞C

-∞B

here0A

NextCostDest

D

G

A

F

E

B

C

DV Example: Table at A, step 1

-∞G

F1F

E1E

-∞D

C1C

B1B

here0A

NextCostDest

D

G

A

F

E

B

C

DV Example: Final Table at A

F2G

F1F

E1E

C2D

C1C

B1B

here0A

NextCostDest

D

G

A

F

E

B

C

Reached in two iterations
=> simple example

What if there are changes?

● Suppose link between F and G
fails
– F notices failure, sets its cost to G to

infinity and tells A
– A sets its cost to G to infinity too,

since it can’t use F
– A learns route from C with cost 2 and

adopts it

a

D

G

A

F

E

B

C

XXXXX F3G

F1F

E1E

C2D

C1C

B1B

here0A

NextCostDest

A More Complex Example

A

B

C D

H

G
F

E

v

w

z

x

y

A More Complex Example

● Step 0: v knows about itself, A, B
● Step 1: v learns about C, G, H
● Step 2: v learns about D, E, F

■ D from both w and z

● Step 3: v learns about alternate routes
to C, E, F, G, H

Why Hop Count as Cost Metric?

● Latency as metric used in original ARPAnet
■ dynamically unstable
■ penalized satellite links

● Hop count yields unique loop-free path
■ reflects router processing overhead consumed by

packet

● Can we design a dynamically stable adaptive
routing algorithm?

● Simple example
■ Costs in nodes are to reach Internet

● Now link between B and Internet fails …

Count To Infinity Problem

InternetA/2 B/1

Count To Infinity Problem

● B hears of a route to the Internet via A
with cost 2

● So B switches to the “better” (but
wrong!) route

update

InternetA/2 B/3 XXX

Count To Infinity Problem

● A hears from B and increases its cost

update

InternetA/4 B/3 XXX

Count To Infinity Problem

● B hears from A and (surprise) increases its
cost

● Cycle continues and we “count to infinity”

● Packets caught in the crossfire loop between
A and B

update

InternetA/4 B/5 XXX

Solutions

● Split horizon
■ Router never advertises the cost of a destination back

to its next hop – that’s where it learned it from!
■ Solves trivial count-to-infinity problem

● Poison reverse (RIP)
■ go farther: advertise infinity back to source
■ vulnerable to more complex topology changes

● Path vector (BGP)
■ announce entire path to each destination
■ easy to check for loops

Routing Information Protocol (RIP)

● DV protocol with hop count as metric
■ Infinity value is 16 hops; limits network size
■ Includes split horizon with poison reverse

● Routers send vectors every 30 seconds
■ With triggered updates for link failures
■ Time-out in 180 seconds to detect failures

● RIPv1 specified in RFC1058
■ www.ietf.org/rfc/rfc1058.txt

● RIPv2 (adds authentication etc.) in RFC1388
■ www.ietf.org/rfc/rfc1388.txt

