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Roadmap

LAN vs. Internet routing
■ MAC vs. IP addresses

Forwarding mechanisms
■ Source routing
■ Global addresses
■ Virtual circuits

● Routing algorithms
■ spanning tree
■ distance vector
■ link state



Forwarding Mechanics Example
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Virtual Circuits (ATM, MPLS)

● Each connection has destination address;
each packet has virtual circuit ID (VCI)

● Each switch has forwarding table of
connection -> next hop
■ at connection setup, allocate virtual circuit ID (VCI)

at each switch in path
■ (input #, input VCI) -> (output #, output VCI)

– At v: (west=A, 12) -> (east=w, 2)
– At w: (west=v, 2) -> (south=y, 7)
– At y: (north=w, 7) -> (south=F, 4)



Virtual Circuits

● Advantages
■ more efficient lookup (smaller tables)

■ more flexible (different path for each circuit)

■ can reserve bandwidth at connection setup

● Disadvantages
■ still need to route connection setup request

■ more complex failure recovery
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Routing Questions

● How to choose best path?
■ Defining “best” is slippery

● How to scale to billions of hosts?
■ Minimize control messages and routing table size

● How to adapt to failures or changes?
■ Node and link failures, plus message loss
■ We will use distributed algorithms

● Use global or local knowledge?
■ Inconsistencies can cause loops and oscillations

● Routing is essentially a problem in graph theory
■ switches = nodes; links = edges; delay/hops = cost

● Need dynamic computation to adapt to changes
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Routing Alternatives

● Spanning Tree (Ethernet)
■ Convert graph into a tree; route only along tree

● Distance vector (RIP, BGP)
■ exchange routing tables with neighbors
■ no one knows complete topology

● Link state (OSPF)
■ send everyone your neighbors
■ everyone computes shortest path

Spanning Tree Example
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Spanning Tree Algorithm

● Distributed algorithm to compute spanning
tree
■ Robust against failures, needs no organization

● Outline:
– Elect a root node of the tree (lowest address)
– Grow tree as shortest distances from the root

(using lowest address to break distance ties)

Algorithm

● Bridges periodically exchange config messages
■ Contain: best root seen, distance to root, bridge address

● Initially, each bridge thinks it is the root
■ Each bridge tells its neighbors its address

● On receiving a config message, update position in tree
■ Pick smaller root address, then
■ Shorter distance to root, then
■ Bridge with smaller address

● Periodically update neighbors
■ Add one to distance to root, send downstream

● Turn off forwarding on ports except those that
send/receive “best”



Algorithm Example

● Message format: (root, dist to root, bridge)
● Sample messages sequences to and from B3:

– B3 sends (B3, 0, B3) to B2 and B5
– B3 receives (B2, 0, B2) and (B5, 0, B5) and accepts B2 as root
– B3 sends (B2, 1, B3) to B5
– B3 receives (B1, 1, B2) and (B1, 1, B5) and accepts B1 as root
– B3 wants to send (B1, 2, B3) but doesn’t as its nowhere “best”
– B3 receives (B1, 1, B2) and (B1, 1, B5) again … stable
– Data forwarding is turned off to A

Some other details

● Configuration information is aged
■ If the root fails a new one will be elected

● Reconfiguration is damped
■ Adopt new spanning trees slowly to avoid

temporary loops



Distance Vector Routing

● Each router periodically exchanges messages with
neighbors

■ best known distance to each destination (“distance vector”)

● Initially, can get to self with 0 cost
● On receipt of update from neighbor, for each destination

■ switch forwarding tables to neighbor if it has cheaper route
■ update best known distance
■ tell neighbors of any changes

● Absent topology changes, will converge to shortest path

DV Example: Initial Table at A
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DV Example: Table at A, step 1
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DV Example: Final Table at A
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What if there are changes?

● Suppose link between F and G
fails
– F notices failure, sets its cost to G to

infinity and tells A
– A sets its cost to G to infinity too,

since it can’t use F
– A learns route from C with cost 2 and

adopts it
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A More Complex Example

● Step 0: v knows about itself, A, B
● Step 1: v learns about C, G, H
● Step 2: v learns about D, E, F

■ D from both w and z

● Step 3: v learns about alternate routes
to C, E, F, G, H

Why Hop Count as Cost Metric?

● Latency as metric used in original ARPAnet
■ dynamically unstable
■ penalized satellite links

● Hop count yields unique loop-free path
■ reflects router processing overhead consumed by

packet

● Can we design a dynamically stable adaptive
routing algorithm?



● Simple example
■ Costs in nodes are to reach Internet

● Now link between B and Internet fails …

Count To Infinity Problem

InternetA/2 B/1

Count To Infinity Problem

● B hears of a route to the Internet via A
with cost 2

● So B switches to the “better” (but
wrong!) route

update

InternetA/2 B/3 XXX



Count To Infinity Problem

● A hears from B and increases its cost

update

InternetA/4 B/3 XXX

Count To Infinity Problem

● B hears from A and (surprise) increases its
cost

● Cycle continues and we “count to infinity”

● Packets caught in the crossfire loop between
A and B

update

InternetA/4 B/5 XXX



Solutions

● Split horizon
■ Router never advertises the cost of a destination back

to its next hop – that’s where it learned it from!
■ Solves trivial count-to-infinity problem

● Poison reverse (RIP)
■ go farther: advertise infinity back to source
■ vulnerable to more complex topology changes

● Path vector (BGP)
■ announce entire path to each destination
■ easy to check for loops

Routing Information Protocol (RIP)

● DV protocol with hop count as metric
■ Infinity value is 16 hops; limits network size
■ Includes split horizon with poison reverse

● Routers send vectors every 30 seconds
■ With triggered updates for link failures
■ Time-out in 180 seconds to detect failures

● RIPv1 specified in RFC1058
■ www.ietf.org/rfc/rfc1058.txt

● RIPv2 (adds authentication etc.) in RFC1388
■ www.ietf.org/rfc/rfc1388.txt


