Midterm

- Wednesday, February 13th (next week)
- 8.5x11 sheet of notes, front and back
- Cover everything up to (but not including) Congestion control.
- Some (not not necessarily all) possible topics
 - Link Layer
 - Network Scaling
 - CIDR
 - Bridging(basic)
 - IP
 - Routing
 - Reliable transport/TCP

IPv4 Packet Format

0	4	8	3 1	6 [,]	19		3′
Ver	sion	HLen	TOS	Length			
Identifier for Fragments			Flags	Fraç	gment Offset		
TTL Protocol			Checksum				
Source Address							
Destination Address							
Options (variable) Pad (variable)							
Data							
			\sim				

Common ICMP Messages

- Destination unreachable
 - "Destination" can be host, network, port or protocol
- Redirect
 - To shortcut circuitous routing
- TTL Expired
 - Used by the "traceroute" program
- Echo request/reply
 - Used by the "ping" program
- ICMP messages include portion of IP packet that triggered the error (if applicable) in their payload

ICMP Restrictions

- The generation of error messages is limited to avoid cascades ... error causes error that causes error!
- Don't generate ICMP error in response to:
 - An ICMP error
 - Broadcast/multicast messages (link or IP level)
 - IP header that is corrupt or has bogus source address
 - Fragments, except the first
- ICMP messages are often rate-limited too.

UDP Packet Header

- Source, destination ports
- Checksum
- Length

TCP

- What else would we like?
 - Programming model we understand
 - IP is packet oriented, but apps don't want to deal with packets.
 - Stream oriented programming model
 - Connection between sender and receiver
 - Reliable/In order
 - We never get the same piece of a message twice, and if we get any piece, we also got everything up to that piece.
 - Flow control
 - Is the receiver getting behind?
 - Later: congestion control

TCP Packet Header

- Source, destination ports
- Sequence # (bytes being sent)
- Ack # (next byte expected)
- Receive window size
- Checksum
- Flags: SYN, FIN, RST

Routing topics

- Routing
 - Link State
 - Distance Vector
 - Path Vector

What information will be known at D?

In distance vector, usually only remember the Best route(in gray) and ALWAYS only pass best on.

Destination	Next Hop	Cost
А	В	2
	С	4
В	В	1
	С	3
С	В	3
	С	1
D	D	0
	В	2
	С	2

Split horizon/poison reverse squelches some advertisements that could cause loops

Destination	Next Hop	Cost
A	В	2
	С	∞
В	В	1
	С	∞
С	В	∞
	С	1
D	D	0
	В	∞
	С	∞

In Path vector, often remember all routes heard (but only pass on the best one)

Destination	Next Hop	Cost	Path
А	В	2	->B->A
	С	4	->C->B->D->B->A
В	В	1	->B
	С	3	->C->D->B
С	В	3	->B->D->C
	С	1	->C
D	D	0	
	В	2	->B->D
	С	2	->C->D

Link	Weight
BD	1
DC	1
BC	3
AB	1

Use Dijkstra's shortest path algorithm