CSE/EE 461 – Lecture 12

IP Addressing

David Wetherall djw@cs.washington.edu

This Lecture

- Focus
 - How do we make routing scale?
- IP Addressing
 - Hierarchy (prefixes, class A, B, C, subnets)
 - Also allocation (DHCP, ARP)

Application
Presentation
Session
Transport
Network
Data Link
Physical

djw // CSE/EE 461, Winter 2003

Scalability Concerns

- Routing burden grows with size of an internetwork
 - Size of routing tables
 - Volume of routing messages
 - Amount of routing computation
- RIP/OSPF do not scale to the size of the Internet
- We must apply further techniques:
 - Hierarchical addressing
 - Use of structural hierarchy
 - Route aggregation

djw // CSE/EE 461, Winter 2003

L12.3

IP Addresses

- · Reflect location in topology; used for scalable routing
 - Unlike "flat" Ethernet addresses
- Interfaces on same network share prefix
 - Prefix administratively assigned (IANA or ISP)
 - Addresses globally unique
- Routing only advertises entire networks by prefix
 - Local delivery in a single "network" doesn't involve router
 - (will make "network" precise later on)

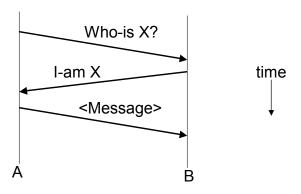
djw // CSE/EE 461, Winter 2003

Getting an IP address

- Old fashioned way: sysadmin configured each machine
- Dynamic Host Configuration Protocol (DHCP)
 - One DHCP server with the bootstrap info
 - Host address, gateway address, subnet mask, ...
 - · Find it using broadcast
 - Addresses may be leased; renew periodically
- "Stateless" Autoconfiguration (in IPv6)
 - Get rid of server reuse Ethernet addresses for lower portion of address (uniqueness) and learn higher portion from routers

djw // CSE/EE 461, Winter 2003

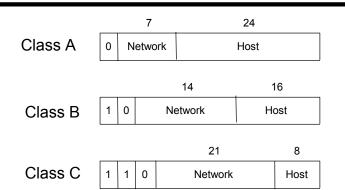
L12.5


Address Resolution Protocol (ARP)

- On a single link, need Ethernet addresses to send a frame
 - ... source is a given, but what about destination?
 - Requires mapping from IP to MAC addresses
- ARP is a dynamic approach to learn mapping
 - Node A sends broadcast query for IP address X
 - Node B with IP address X replies with its MAC address M
 - A caches (X, M); old information is timed out (~15 mins)
 - Also: B caches A's MAC and IP addresses, other nodes refresh

djw // CSE/EE 461, Winter 2003

ARP Example


- To send first message use ARP to learn MAC address
- For later messages (common case) don't need to ARP

djw // CSE/EE 461, Winter 2003

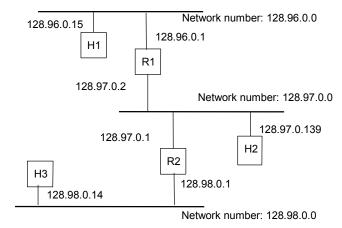
L12.7

IPv4 Address Formats

• 32 bits written in "dotted quad" notation, e.g., 18.31.0.135

djw // CSE/EE 461, Winter 2003

IPv6 Address Format


001 RegistryID ProviderID SubscriberID SubnetID InterfaceID		001	RegistryID	ProviderID	SubscriberID	SubnetID	InterfaceID
---	--	-----	------------	------------	--------------	----------	-------------

- 128 bits written in 16 bit hexadecimal chunks
- Still hierarchical, just more levels

djw // CSE/EE 461, Winter 2003

L12.9

Network Example

djw // CSE/EE 461, Winter 2003

Updated Forwarding Routine

- Used to be "look up destination address for next hop"
- Now addresses have network and host portions:
 - If host: if destination network is the same as the host network, then deliver locally (without router). Otherwise send to the router
 - If router: look up destination network in routing table to find next hop and send to next router. If destination network is directly attached then deliver locally.
- (Note that it will get a little more complicated later)

djw // CSE/EE 461, Winter 2003

L12.11

Subnetting – More Hierarchy

 Split up one network number into multiple physical networks

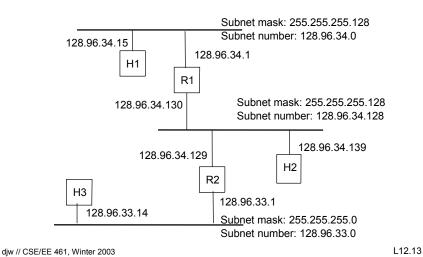
Network number Host number

• Internal structure isn't propagated

11111111111111111111111 00000000

Class B address

Subnet mask (255.255.255.0)


• Helps allocation efficiency

Network number | Subnet ID | Host ID

Subnetted address

djw // CSE/EE 461, Winter 2003

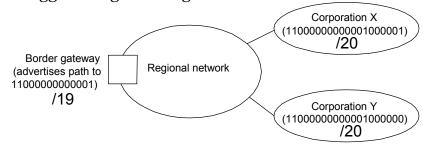
Subnet Example

Updated Forwarding Routine

- Used to know network from address (class A, B, C)
- · Now need to "search" routing table for right subnet
 - If host: easy, just substitute "subnet" for "network"
 - If router: search routing table for the subnet that the destination belongs to, and use that to forward as before
- (Note that it will get a little more complicated later :)

djw // CSE/EE 461, Winter 2003

CIDR (Supernetting)


- CIDR = Classless Inter-Domain Routing
- Generalize class A, B, C into prefixes of arbitrary length; now must carry prefix length with address
- Aggregate adjacent advertised network routes
 - e.g., ISP has class C addresses 192.4.16 through 192.4.31
 - Really like one larger 20 bit address class ...
 - Advertise as such (network number, prefix length)
 - Reduces size of routing tables
- But IP forwarding is more involved
 - Based on Longest Matching Prefix operation

djw // CSE/EE 461, Winter 2003

L12.15

CIDR Example

• X and Y routes can be aggregated because they form a bigger contiguous range.

• But aggregation isn't always possible. Why?

djw // CSE/EE 461, Winter 2003

IP Forwarding Revisited

- Routing table now contains routes to "prefixes"
 - IP address and length indicating what bits are fixed
- Now need to "search" routing table for longest matching prefix, only at routers
 - Search routing table for the prefix that the destination belongs to, and use that to forward as before
 - There can be multiple matches; take the longest prefix
- This is the IP forwarding routine used at routers.

djw // CSE/EE 461, Winter 2003

L12.17

Key Concepts

- · Hierarchical address allocation helps routing scale
 - Addresses are constrained by topology
 - Only need to advertise and compute routes for networks
 - Hide internal structure within a domain via subnets
 - Keep host simple and let routers worry about routing
- ARP learns the mapping from IP to MAC address

djw // CSE/EE 461, Winter 2003