CSE/EE 461 – Lecture 14

Connections

David Wetherall djw@cs.washington.edu

Last Time

- We began on the Transport layer
- Focus
 - How do we send information reliably?
- Topics
 - ARQ and sliding windows

Application Presentation

Session

Transport

Network Data Link

Physical

djw // CSE/EE 461, Winter 2003

This Time

- More on the Transport Layer
- Focus
 - How do we connect processes?
- Topics
 - Naming processes
 - Connection setup / teardown
 - Flow control

Application

Presentation

Session

Transport

Network

Data Link

Physical

djw // CSE/EE 461, Winter 2003

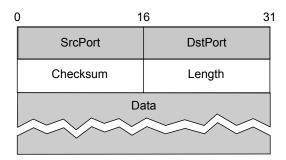
L14.3

Naming Processes/Services

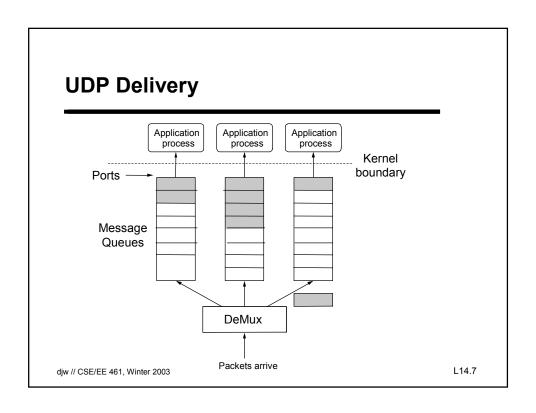
- Process here is an abstract term for your Web browser (HTTP), Email servers (SMTP), hostname translation (DNS), RealAudio player (RTSP), etc.
- How do we identify for remote communication?
 - Process id or memory address are OS-specific and transient
- So TCP and UDP use Ports
 - 16-bit integers representing mailboxes that processes "rent"
 - Identify process uniquely as (IP address, protocol, port)

djw // CSE/EE 461, Winter 2003

Picking Port Numbers

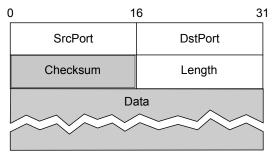

- We still have the problem of allocating port numbers
 - What port should a Web server use on host X?
 - To what port should you send to contact that Web server?
- Servers typically bind to "well-known" port numbers
 - e.g., HTTP 80, SMTP 25, DNS 53, ... look in /etc/services
 - Ports below 1024 reserved for "well-known" services
- Clients use OS-assigned temporary (ephemeral) ports
 - Above 1024, recycled by OS when client finished

djw // CSE/EE 461, Winter 2003


L14.5

User Datagram Protocol (UDP)

- Provides message delivery between processes
 - Source port filled in by OS as message is sent
 - Destination port identifies UDP delivery queue at endpoint

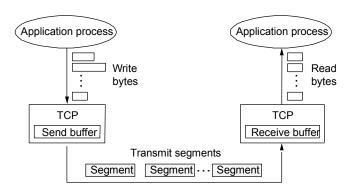


djw // CSE/EE 461, Winter 2003

UDP Checksum

- UDP includes optional protection against errors
 - Checksum intended as an end-to-end check on delivery
 - So it covers data, UDP header, and IP pseudoheader

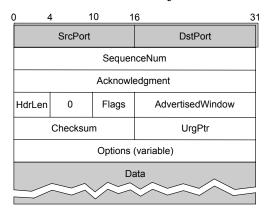
djw // CSE/EE 461, Winter 2003


Transmission Control Protocol (TCP)

- Reliable bi-directional bytestream between processes
 - Message boundaries are not preserved
- Connections
 - Conversation between endpoints with beginning and end
- Flow control (later)
 - Prevents sender from over-running receiver buffers
- Congestion control (later)
 - Prevents sender from over-running network buffers

djw // CSE/EE 461, Winter 2003

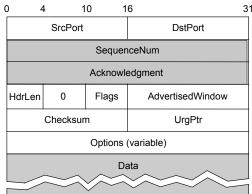
L14.9


TCP Delivery

djw // CSE/EE 461, Winter 2003

TCP Header Format

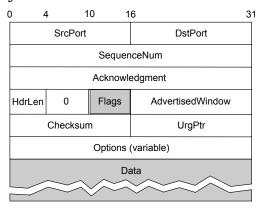
• Ports plus IP addresses identify a connection



djw // CSE/EE 461, Winter 2003

L14.11

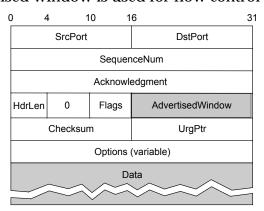
TCP Header Format


- Sequence, Ack numbers used for the sliding window
 - Congestion control works by controlling the window size

djw // CSE/EE 461, Winter 2003

TCP Header Format

• Flags may be URG, ACK, PSH, RST, SYN, FIN



djw // CSE/EE 461, Winter 2003

L14.13

TCP Header Format

· Advertised window is used for flow control

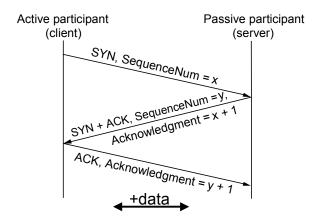
djw // CSE/EE 461, Winter 2003

Other TCP Header Fields

- Header length allows for variable length TCP header with options for extensions such as timestamps, selective acknowledgements, etc.
- · Checksum is analogous to that of UDP
- Urgent pointer/data not used in practice
- Very few bits not assigned ...

djw // CSE/EE 461, Winter 2003

L14.15

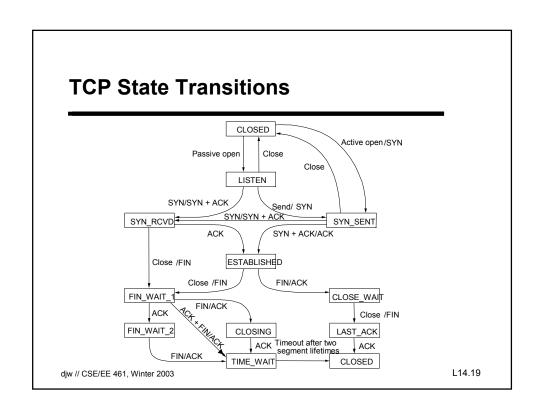

Connection Establishment

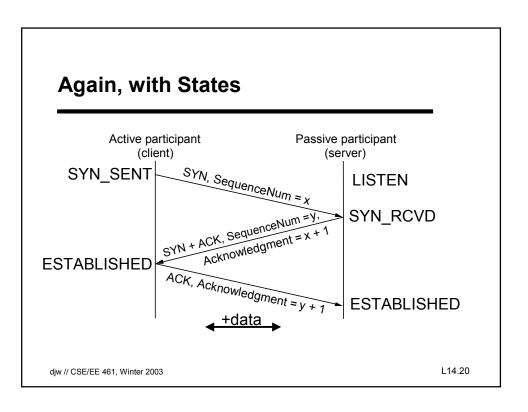
- Both sender and receiver must be ready before we start to transfer the data
 - Sender and receiver need to agree on a set of parameters
 - e.g., the Maximum Segment Size (MSS)
- This is signaling
 - It sets up state at the endpoints
 - Compare to "dialing" in the telephone network
- In TCP a Three-Way Handshake is used

djw // CSE/EE 461, Winter 2003

Three-Way Handshake

· Opens both directions for transfer

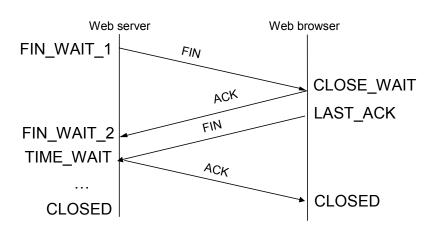

djw // CSE/EE 461, Winter 2003


L14.17

Some Comments

- We could abbreviate this setup, but it was chosen to be robust, especially against delayed duplicates
 - Three-way handshake from Tomlinson 1975
- Choice of changing initial sequence numbers (ISNs) minimizes the chance of hosts that crash getting confused by a previous incarnation of a connection
- But with random ISN it actually proves that two hosts can communicate
 - Weak form of authentication

djw // CSE/EE 461, Winter 2003


Connection Teardown

- Orderly release by sender and receiver when done
 - Delivers all pending data and "hangs up"
- · Cleans up state in sender and receiver
- TCP provides a "symmetric" close
 - both sides shutdown independently

djw // CSE/EE 461, Winter 2003

L14.21

djw // CSE/EE 461, Winter 2003

The TIME_WAIT State

- We wait 2MSL (two times the maximum segment lifetime of 60 seconds) before completing the close
- Why?
- · ACK might have been lost and so FIN will be resent
- Could interfere with a subsequent connection

djw // CSE/EE 461, Winter 2003

L14.23

Key Concepts

- We use ports to name processes in TCP/UDP
 - "Well-known" ports are used for popular services
- Connection setup and teardown complicated by the effects of the network on messages
 - TCP uses a three-way handshake to set up a connection
 - TCP uses a symmetric disconnect

djw // CSE/EE 461, Winter 2003