CSE/EE 461 – Lecture 17

TCP Congestion Control

David Wetherall djw@cs.washington.edu

Last Time ...

- The Transport Layer
- Focus
 - How do we allocate bandwidth?
- Topics
 - Congestion
 - Fairness

Application

Presentation

Session

Transport Network

Data Link

Physical

djw // CSE/EE 461, Winter 2003

This Lecture

- The Transport Layer
- Focus
 - How does TCP share bandwidth?
- Topics
 - Additive Increase/Multiplicative Decrease
 - Slow Start
 - Fast Recovery

Application Presentation

Session

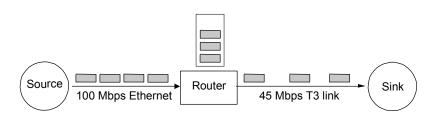
Transport

Network

Data Link

Physical

djw // CSE/EE 461, Winter 2003

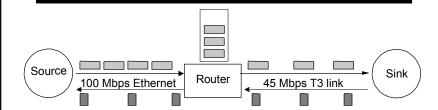

L17.3

TCP Before Congestion Control

- Just use a fixed size sliding window!
 - Will under-utilize the network or cause unnecessary loss
- Congestion control dynamically varies the size of the window to match sending and available bandwidth
 - Sliding window uses minimum of cwnd, the congestion window, and the advertised flow control window
- The big question: how do we decide what size the window should be?

djw // CSE/EE 461, Winter 2003

TCP Probes the Network

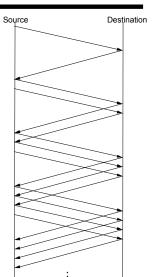


- Each source independently probes the network to determine how much bandwidth is available
 - Changes over time, since everyone does this
- Assume that packet loss implies congestion
 - Since errors are rare; also, requires no support from routers

djw // CSE/EE 461, Winter 2003

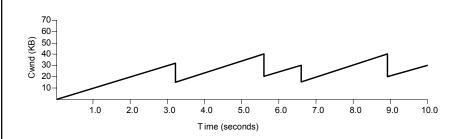
L17.5

TCP is "Self-Clocking"


- Neat observation: acks pace transmissions at approximately the botteneck rate
- So just be sending packets we can discern the "right" sending rate (called the packet-pair technique)

djw // CSE/EE 461, Winter 2003

AIMD (Additive Increase/Multiplicative Decrease)

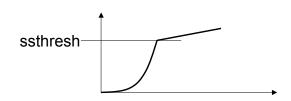

- How to adjust probe rate?
- Increase slowly while we believe there is bandwidth
 - Additive increase per RTT
 - Cwnd += 1 packet / RTT
- Decrease quickly when there is loss (went too far!)
 - Multiplicative decrease
 - Cwnd \neq 2

djw // CSE/EE 461, Winter 2003

L17.7

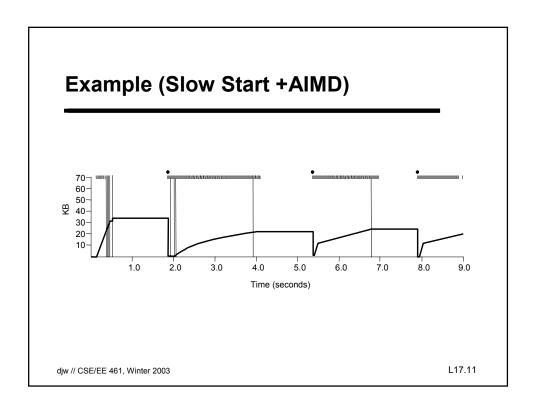
TCP Sawtooth Pattern

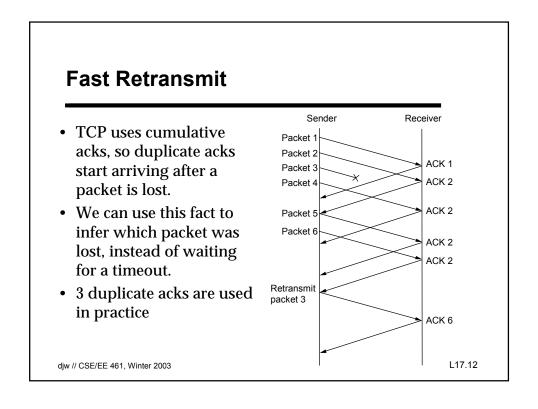
djw // CSE/EE 461, Winter 2003

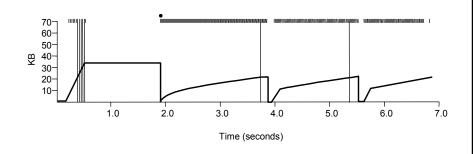

"Slow Start"

- Q: What is the ideal value of cwnd? How long will AIMD take to get there?
- Use a different strategy to get close to ideal value
 - Double cwnd every RTT
 - Cwnd *= 2 / RTT
 - Cwnd +=1 / packet received

L17.9

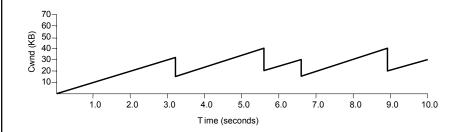

djw // CSE/EE 461, Winter 2003


Combining Slow Start and AIMD


- Slow start is used whenever the connection is not running with packets: initially, and after timeouts
- But we don't want to overshoot our ideal cwnd, so remember the last cwnd that worked with no loss
 - Ssthresh = cwnd after cwnd /= 2 on loss
 - Switch to AIMD once cwnd passes ssthresh

djw // CSE/EE 461, Winter 2003

djw // CSE/EE 461, Winter 2003


L17.13

Fast Recovery

- After Fast Retransmit, use further duplicate acks to grow cwnd and clock out new packets, since these acks represent packets that have left the network.
- End result: Can achieve AIMD when there are single packet losses. Only slow start the first time.

djw // CSE/EE 461, Winter 2003

djw // CSE/EE 461, Winter 2003

L17.15

Key Concepts

- TCP probes the network for bandwidth, assuming that loss signals congestion
- The congestion window is managed to be additive increase / multiplicative decrease
 - It took fast retransmit and fast recovery to get there
- · Slow start is used to avoid lengthy initial delays
 - Ramp up to near target rate and then switch to AIMD

djw // CSE/EE 461, Winter 2003