
1

CSE/EE 461 – Lecture 23

Security

sdg // CSE/EE 461, Autumn 2005 L23.2

Last Time

• Naming

• Focus
– How do we name hosts etc.?

• Topics
– Domain Name System (DNS)

Physical
Data Link
Network

Transport
Session

Presentation
Application

sdg // CSE/EE 461, Autumn 2005 L23.3

This Time

• Network security

• Focus
– How do we secure distributed systems?

• Topics
– Privacy, integrity, authenticity
– Cryptography
– Practical security

Physical
Data Link
Network

Transport
Session

Presentation
Application

2

sdg // CSE/EE 461, Autumn 2005 L23.4

What do we mean by “Security”?

• Networks are fundamentally shared
– Need means to protect messages sent by legitimate participants

from others with access to the network

• Privacy: messages can’t be eavesdropped
• Integrity: messages can’t be tampered with
• Authenticity: messages were sent by the right party

• These are in addition to the need to protect networked
systems from intrusions and compromise by attackers

sdg // CSE/EE 461, Autumn 2005 L23.5

Approaches at 10,000 ft

• Physical security
– Tackle the problem of sharing directly

• “Security through obscurity”
– Hope no-one will find out what you’re doing!

• Throw math at the problem
– Cryptography

• Why is security difficult?
– It’s a negative goal: can you be sure there are no flaws?
– Often assumptions turn out to be invalid, esp. randomness

sdg // CSE/EE 461, Autumn 2005 L23.6

Basic Encryption for Privacy

• Cryptographer chooses functions E, D and keys KE, KD

– Mathematical basis
• Cryptanalyst try to “break” the system

– Depends on what is known: E and D, M and C?

Sender
Plaintext (M)

Encrypt
E(M,KE)

Ciphertext (C)

Receiver
Plaintext (M)

Decrypt
D(C, KD)

3

sdg // CSE/EE 461, Autumn 2005 L23.7

Secret Key Functions (DES, IDEA)

• Single key (symmetric) is shared between parties
– Often chosen randomly, but must be communicated

Plaintext

Encrypt with
secret key

Ciphertext

Plaintext

Decrypt with
secret key

sdg // CSE/EE 461, Autumn 2005 L23.8

Initial permutation

Round 1

Round 2

Round 16

56-bit
key

Final permutation

…

+

F

Li – 1 Ri – 1

Ri

Ki

Li

Each Round:

DES uses a 64 bit key (56 + 8)
Message encrypted 64 bits at a time
16 rounds in the encryption
Each round scrambles 64 bits

Basics of DES

sdg // CSE/EE 461, Autumn 2005 L23.9

DES (cont.)

• Repeat process for larger messages with “chaining”

Block1

IV

DES

Cipher1

Block2

DES

Block3

DES

Block4

DES

+

Cipher2 Cipher3 Cipher4

+++

4

sdg // CSE/EE 461, Autumn 2005 L23.10

Public Key Functions (RSA)

• Public and private key related mathematically
– Public key can be published; private is a secret

Plaintext

Encrypt with
public key

Ciphertext

Plaintext

Decrypt with
private key

sdg // CSE/EE 461, Autumn 2005 L23.11

Authentication Protocols

• Three-way handshake for mutual authentication
– Client and server share secrets, e.g., login password

Client Server

ClientId, E(x, CHK)

E(y + 1, CHK)

E(SK, SHK)

E(x + 1, SHK), E(y, SHK)

Client authenticates
server here

Server authenticates
client here

Session key
exchanged

sdg // CSE/EE 461, Autumn 2005 L23.12

Authenticity and Integrity

• Sometimes we care about knowing messages authentic,
but don’t care about privacy.

• If only sender and receiver knew the keys we would be
done … but that’s often not the case
– A pair of keys for each pair of communicating parties?

• In public key (RSA) systems the “encryption” key is
potentially known by everyone
– anyone could have sent us a confidential message by encrypting

with our public key

5

sdg // CSE/EE 461, Autumn 2005 L23.13

RSA Digital Signature

• Notice that we reversed the role of the keys (and the
math just works out) so only one party can send the
message but anyone can check it’s authenticity

Plaintext

Encrypt with
PRIVATE key

Ciphertext

Plaintext

Decrypt with
PUBLIC key

sdg // CSE/EE 461, Autumn 2005 L23.14

A Faster “RSA Signature”

• Encryption can be expensive, e.g., RSA 1Kbps
• To speed up, let’s sign just the checksum instead!

– Check that the encrypted bit is a signature of the checksum

• Problem: Easy to alter data without altering checksum
• Answer: Cryptographically strong “checksums” called

message digests where it’s computationally difficult to
choose data with a given checksum
– But they still run much more quickly than encryption
– MD5 (128 bits) is the most common example

sdg // CSE/EE 461, Autumn 2005 L23.15

Message Digests (MD5, SHA)

• Act as a cryptographic checksum or hash
– Typically small compared to message (MD5 128 bits)
– “One-way”: infeasible to find two messages with same digest

Transform

Initial digest Message (padded)

Transform

Message digest

512 bits 512 bits 512 bits

…

…

Transform

6

sdg // CSE/EE 461, Autumn 2005 L23.16

Cryptography in Protocols

• These techniques can be applied at different levels:
– IP packets (IPSEC)
– Web transfers or other transports (SSL /TLS, Secure HTTP)
– Email (PGP)

sdg // CSE/EE 461, Autumn 2005 L23.17

Practical issues

• In practice, systems are not that secure
– hackers can go after weakest link

• any system with bugs is vulnerable
– vulnerability often not anticipated

• usually not a brute force attack against encryption system
– often can’t tell if system is compromised

• hackers hide their tracks
– can be hard to re-secure system after breakin

• hackers can leave hard-to-detect backdoors

sdg // CSE/EE 461, Autumn 2005 L23.18

Password dictionary attacks

• Moore’s law: brute force attacks get cheaper with time
• UNIX passwords:

– time to check all 5 letter passwords (lower case)?
• 26^5 =~ 10 million passwords
• 1975: 1 day
• 1992: 10 seconds
• 2002: 0.01 seconds

– how about six letters, requiring upper, lower, number, and
control character?

• 70^6 ~ 600 billion passwords
• 1992: 6 days
• 2002: with 100 PC’s in parallel, <60 seconds (!!!)

7

sdg // CSE/EE 461, Autumn 2005 L23.19

What do you trust? Why?

• Can you trust your login prompt?
– how do you know the person before you really logged out?

• Can you trust your web browser?
– what if somebody modified the installed version to capture your

passwords and bank account numbers?
– did you download the browser over the web? How do you

know it wasn’t modified at the source, or in flight?
– does your browser have vulnerabilities? How do you know the

web sites you’ve visited haven’t exploited them?

• Can you trust your email?
– how do you know the sender sent the mail, and that it wasn’t

modified in flight?

sdg // CSE/EE 461, Autumn 2005 L23.20

The lure: an email message

sdg // CSE/EE 461, Autumn 2005 L23.21

The mimicked website…

8

sdg // CSE/EE 461, Autumn 2005 L23.22

The sinker….

sdg // CSE/EE 461, Autumn 2005 L23.23

How did this work? (1/3)

• The email message itself is spam
– sent to hundreds of millions of destination addresses
– attacker only needs to harvest tiny fraction

• Spam is typically transmitted through “relays”
– compromised PCs forced to run relay software
– makes it harder to trace and shut down attacker

sdg // CSE/EE 461, Autumn 2005 L23.24

How did this work? (2/3)

• The link in the email message is really an image
– like the web, email can contain hyperlinked images

• clicking on the image takes you to the linked web page

– the image is:

– the link takes you to:

http://218.246.224.203/icons/.cgi-bin/paypal/cgi-bin/webscrcmd_login.php

– 218.246.224.203 is some machine in China
• most likely a compromised PC

9

sdg // CSE/EE 461, Autumn 2005 L23.25

How did this work? (3/3)

• The web page contains content that…
– instructs IE not to show the real address bar

• hides “http://218.246.224.203/icons/…” from user
– displays images and text that spoofs an address bar containing a

falsified URL

sdg // CSE/EE 461, Autumn 2005 L23.26

sdg // CSE/EE 461, Autumn 2005 L23.27

Internet worms

• Worm performs the following steps:

while(1) {
pick random IP address;
scan IP address for known remote vulnerability;
if is vulnerable {

exploit vulnerability and copy self to remote host;
}

}

• Deadly, but can do much better
– non-random scanning, multiple vulnerabilities, etc.

10

sdg // CSE/EE 461, Autumn 2005 L23.28

Why are worms bad?

• They cause damage to victims
– worms can carry “payloads”

• e.g., install spyware
• e.g., mount coordinated attack on a Web site

• They cause damage to the Internet
– probing for victims and spreading causes Internet traffic
– a fast-spreading worm can overwhelm Internet links

sdg // CSE/EE 461, Autumn 2005 L23.29

Famous examples

• Code Red v2 [2002]
– attacked Microsoft IIS web servers
– infected 500,000 victims within 10 hours
– doubled in size every 37 minutes

• Sapphire [2003]
– attacked Microsoft SQL server
– infected 75,000 victims within 10 minutes
– doubled in size every 8.5 seconds

sdg // CSE/EE 461, Autumn 2005 L23.30

Worse case scenario

• Hypothetical “hitlist” worm
– probe for potential victims before releasing worm
– attack these susceptible victims first
– avoids “random probe” that most worms perform

• In principle, would infect millions within seconds

11

sdg // CSE/EE 461, Autumn 2005 L23.31

Ping of Death

• IP packets can be fragmented and reordered in flight
• Reassembly done at remote host

– can get fragments out of order, so host OS much allocate a
buffer to hold fragments

• Malformed IP fragment is possible
– offset + length > max packet size
– Windows didn’t check this
– could overflow buffer in Windows kernel

• Was used for denial of service (crash Windows)
– but could have been used for worm propagation

sdg // CSE/EE 461, Autumn 2005 L23.32

DNS cache poisoning

• DNS queries/responses are unauthenticated
– no encryption used

• Many attacks possible as a result
• DNS cache poisoning:

– attacker monitors network for a DNS query flowing by
• e.g., for www.google.com

– attacker spoofs a reply to “poison” the cache of whomever
asked the query

• spoofed response points to server of attacker’s choosing
– Imagine if Comcast’s DNS servers are poisoned…

sdg // CSE/EE 461, Autumn 2005 L23.33

Browser hacks

• Netscape used to use time of day, process ID to seed
random number generator
– random number used to pick conversation key
– easy to predict, and therefore break

• Netscape used to be downloaded without encryption
– four byte change to executable made it use attacker’s key

• Plenty of browser bugs
– drive-by download: web server exploits bug to 0wn client
– phishing attacks: attack web site looks like authoritative site

• often combined with homograph attack:
– www.goog1e.com

12

sdg // CSE/EE 461, Autumn 2005 L23.34

Social engineering

• Con person into giving out information
• Phone secretary, say:

– “Hi. I’m your company’s IT administrator. Your boss is currently
traveling, and I can’t reach them. I need their password to verify their
account hasn’t been broken into. This is really urgent.”

• Somebody phones you, and says:
– “Hi. I’m with the Bank of America credit card fraud division. We’ve

detected suspicious activity on your account, and we want to ensure
you haven’t become a victim of identity theft. Before we start, I need to
verify your identity. What is your bank account number? SSN?”

• Often far more effective than technical attack
– requires all people with access to sensitive information to be conscious

of security issues

sdg // CSE/EE 461, Autumn 2005 L23.35

Denial of Service in the News

Denial-of-service attack
cripples Microsoft for second
day
By John Fontana
Network World Fusion, 01/25/01

Adding insult to injury, attackers launched
a denial-of-service attack against Microsoft
Thursday that crippled access to the
company's Web sites for a second day.

sdg // CSE/EE 461, Autumn 2005 L23.36

What is Denial of Service?

• Attacker can deny service to legitimate users if they can overwhelm
the system providing the service
– System is full of bugs … just send it packets that trigger them
– System has limited bandwidth, CPU, memory, etc. … just sent it too

many packets to handle

• Big issue in practice and lack of effective solutions
– Today, patch as found (CERT) or build implementation to tolerate DOS
– Tomorrow, design protocols to withstand, possibly network support

for shutting down attack?

• Two broad classes:
– Nasty packets trigger implementation bugs, e.g., Ping of Death
– Packet floods target bandwidth, CPU, memory, e.g., SYN flood

13

sdg // CSE/EE 461, Autumn 2005 L23.37

Complication: Spoofed Addresses

• Why reveal your real address? Instead, “spoof” it.
– Can implicate others and appear to be many hosts

• Solution?
– Ingress filtering (ISPs check validity of source addresses) helps,

but has poor incentive patterns and is not a complete solution

• Opportunity: “backscatter analysis”
– host reponds to spoofed packet, sends response packet to

essentially random IP
– if you have a large number of unused IPs, just listen and you’ll

hear the backscatter -- can measure DOS attacks!

sdg // CSE/EE 461, Autumn 2005 L23.38

Complication: Reflectors & Amplifiers

• Some packets arriving “out of the blue” trigger a reply
– Use this with spoofing to launder attack traffic (e.g., DNS)
– Use with broadcast addresses to amplify attack (e.g., Smurf)

sdg // CSE/EE 461, Autumn 2005 L23.39

Distributed DOS (DDOS)

• Use automated tools to set up a network of zombies
– Trin00, TFN, mstream, Stacheldraht, …

14

sdg // CSE/EE 461, Autumn 2005 L23.40

Lessons

• Encryption is powerful tool
– strong mathematical properties
– used to provide integrity, authenticity, privacy
– must be used correctly

• Many other security issues in practice
– non-mathematical, “best practice” based
– easy to get wrong

• In the end, people are the weak link
– social engineering

