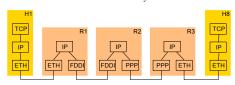

CSE/EE 461 IP/ICMP and the Network Layer **Last Time** • Focus: - What to do when one shared LAN isn't big enough? Application Presentation • Interconnecting LANs - Bridges and LAN switches - But there are limits ... Session Transport Data Link Physical **This Lecture** - How do we build large networks? Application Presentation • Introduction to the Network layer - Internetworks Session Service modelsIP, ICMP Transport Network Data Link Physical

Internetworks

- $\bullet\,$ Set of interconnected networks, e.g., the Internet
 - Scale and heterogeneity


The Network Layer

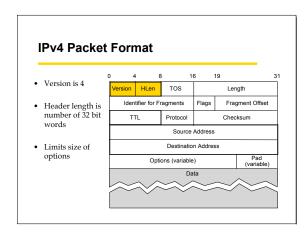
- Job is to provide end-to-end data delivery between hosts on an internetwork
- Provides a higher layer of addressing

In terms of protocol stacks

- $\bullet\;$ IP is the network layer protocol used in the Internet
- Routers are network level gateways
- Packet is the term for network layer PDUs

In terms of packet formats • View of a packet on the wire on network 1 or 2 • Routers work with IP header, not higher - Higher would be a "layer violation" • Routers strip and add link layer headers Ethernet Header IP Header Higher layer headers and Payload Front of packet to left (and uppermost)

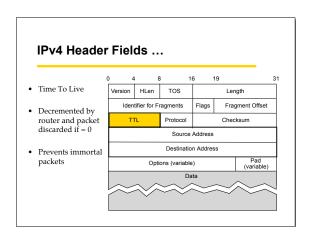
Network Service Models

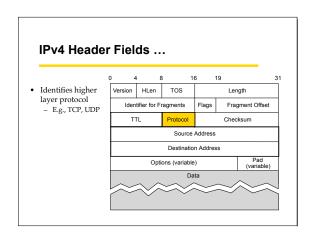

- Datagram delivery: postal service

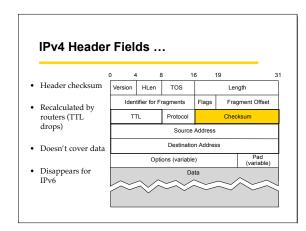
- connectionless, best-effort or unreliable service
 Network can't guarantee delivery of the packet
 Each packet from a host is routed independently
- Example: IP
- Virtual circuit models: telephone

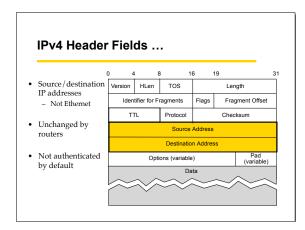
 - connection-oriented service
 Signaling: connection establishment, data transfer, teardown
 - All packets from a host are routed the same way (router state)
 Example: ATM, Frame Relay, X.25

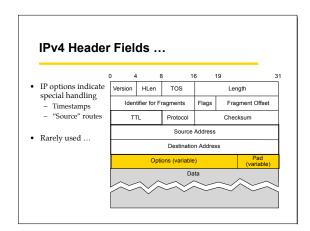
Internet Protocol (IP)

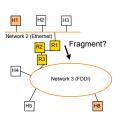

- IP (RFC791) defines a datagram "best effort" service
 - May be loss, reordering, duplication, and errors!
 - Currently IPv4 (IP version 4), IPv6 on the way
- Routers forward packets using predetermined routes
 - Routing protocols (RIP, OSPF, BGP) run between routers to maintain routes (routing table, forwarding information base)
- Global, hierarchical addresses, not flat addresses
 - 32 bits in IPv4 address; 128 bits in IPv6 address
 - ARP (Address Resolution Protocol) maps IP to MAC addresses




IPv4 Header Fields ... • Type of Service Version HLen TOS Length Flags Identifier for Fragments Fragment Offset Abstract notion, never really worked out Protocol Checksum Source Address - Routers ignored Destination Address But now being redefined for Diffserv Options (variable) Data




IPv4 Header Fields ... • Fragment fields Version HLen TOS Length Identifier for Fragments • Different LANs Fragment Offset have different Protocol Checksum frame size limits Source Address May need to break large packet into Destination Address Options (variable) Pad (variable) smaller fragments Data



Fragmentation Issue

- Different networks may have different frame limits (MTUs)
 - Ethernet 1.5K, FDDI 4.5K
- Don't know if packet will be too big for path beforehand
 - IPv4: fragment on demand and reassemble at destination
 - IPv6: network returns error message so host can learn limit

Fragmentation and Reassembly

- Strategy
 - fragment when necessary (MTU < Datagram size)
 - try to avoid fragmentation at source host
 - refragmentation is possible
 - fragments are self-contained IP datagrams
 delay reassembly until destination host

 - do not recover from lost fragments

Fragment Fields

- Fragments of one packet identified by (source, dest, frag id) triple
 Make unique
- Offset gives start, length changed
- Flags are More Fragments (MF) Don't Fragment (DF)

C) 4	1 8	3 10	ŝ '	19		31
	Version	HLen	TOS	Length			
	Identifier for Fragments			Flags Fragment Offset			
	Т	ΓL	Protocol	Checksum			
	Source Address						
Destination Address							
	Options (variable) Pad (variable)					Ī	
Data O							

Fragmenting a Packet ount of header x 0 Offset = 0 Rest of hereby Packet Format **Fragment Considerations** • Making fragments be datagrams provides: - Tolerance of loss, reordering and duplication - Ability to fragment fragments • Reassembly done at the endpoint - Puts pressure on the receiver, not network interior • Consequences of fragmentation: - Loss of any fragments causes loss of entire packet - Need to time-out reassembly when any fragments lost **Fragmentation Issues Summary** • Causes inefficient use of resources within the network - BW, CPU • Higher level protocols must re-xmit entire datagram on lossy network links, hard for packet to survive • Efficient reassembly is hard Lots of special cases (think linked lists)

Avoiding Fragmentation · Always send small datagrams Might be too small • "Guess" MTU of path - Use DF flag. May have large startup time

• Discover actual MTU of path

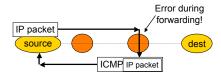
- One RT delay w/help, much more w/o.
- "Help" requires router support
- Guess or discover, but be willing to accept your mistakes

Path MTU Discovery			
	Dath	MTII	Discovery

- Path MTU is the smallest MTU along path
 Packets less than this size don't get fragmented
- Fragmentation is a burden for routers
 - We already avoid reassembling at routers
 - Avoid fragmentation too by having hosts learn path MTUs
- Hosts send packets, routers return error if too large
 - Hosts discover limits, can fragment at source
 - Reassembly at destination as before
- Learned lesson from IPv4, streamlined in IPv6

IP Addresses and IP Datagram **Forwarding**

- IP datagram (packet) contains destination address
- How the source gets the packet to the destination:
 if source is on same network (LAN) as destination, source sends packet directly to destination host
 else source sends data to a router on the same network as the source


 - router will forward packet to a router on the next network over
 and so on...

 - until packet arrives at router on same network as destination; then, router sends packet directly to destination host
- - every host needs to know IP address of the router on its LAN
 every router needs a routing table to tell it which neighboring network to forward a given packet on

ICMP

- What happens when things go wrong?
 - Need a way to test/debug a large, widely distributed system
- ICMP = Internet Control Message Protocol (RFC792)
 - Companion to IP required functionality
- Used for error and information reporting:
 - Errors that occur during IP forwarding
 - Queries about the status of the network

ICMP Generation

Common ICMP Messages

- · Destination unreachable
 - "Destination" can be host, network, port or protocol
- Packet needs fragmenting but DF is set
- Redirect
- To shortcut circuitous routing
- TTL Expired
 Used by the "traceroute" program Echo request/reply
 Used by the "ping" program
- Cannot Fragment Busted Checksum
- ICMP messages include portion of IP packet that triggered the error (if applicable) in their payload

10

The generation of error messages is limited to avoid cascades ... error causes error that causes error! Don't generate ICMP error in response to: An ICMP error Broadcast/multicast messages (link or IP level) IP header that is corrupt or has bogus source address Fragments, except the first ICMP messages are often rate-limited too. Key Concepts

Network layer provides end-to-end data delivery across an internetwork, not just a LAN Datagram and virtual circuit service models IP/ICMP is the network layer protocol of the Internet Up next: More detailed look at routing and addressing