CSE/EE 461 - Lecture 9 **Distance Vector Routing Last Time** • Introduction to the Network layer Application - Internetworks Presentation - Datagram and virtual circuit services - Internet Protocol (IP) packet format Session Transport Network • The Network layer Data Link - Provides end-to-end data delivery between Physical networks - Issues of scale and heterogeneity sdg // CSE/EE 461, Winter 2003 **This Time** - How do we calculate routes for packets? Application - Routing is a network layer function Presentation Session • Routing Algorithms Transport - Distance Vector routing (RIP) Network Data Link Physical

L9.3

sdg // CSE/EE 461, Winter 2003

Forwarding and Routing

- Forwarding is the process that each router goes through for every packet to send it on its way
 - Involves local decisions
- Routing is the process that all routers go through to calculate the routing tables
 - Involves global decisions

sdg // CSE/EE 461, Winter 2003

L9.4

What's in a Routing Table?

• The routing table at A, for example, lists at a minimum the next hops for the different destinations

Dest	Next Hop	
В	В	
С	С	
D	С	
E	Е	
F	Е	
G	F	

sdg // CSE/EE 461, Winter 2003

L9.5

Kinds of Routing Schemes

- Many routing schemes have been proposed/explored!
- <u>Distributed</u> or centralized
- <u>Hop-by-hop</u> or source-based
- <u>Deterministic</u> or stochastic
- Single or multi-path
- Static or dynamic route selection
- Internet is to the left $\ensuremath{\mathfrak{D}}$

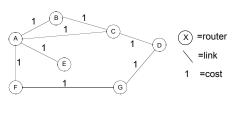
sdg // CSE/EE 461, Winter 2003

Routing Questions

- How to choose best path?
 - Defining "best" is slippery
- How to scale to millions of users?
- Minimize control messages and routing table size
- How to adapt to failures or changes?
 - Node and link failures, plus message loss
 We will use distributed algorithms

sdg // CSE/EE 461, Winter 2003

L9.7


Some Pitfalls

- Using global knowledge is challenging
 - Hard to collect
 - Can be out-of-date
 - Needs to summarize in a locally-relevant way
- $\bullet \;$ Inconsistencies in local / global knowledge can cause:
 - Loops (black holes)
 - Oscillations, esp. when adapting to load

sdg // CSE/EE 461, Winter 2003

Network as a Graph

• Routing is essentially a problem in graph theory

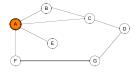
sdg // CSE/EE 461, Winter 2003

Distance Vector Routing

- Assume:
 - Each router knows only address/cost of neighbors
- Goal
 - Calculate routing table of next hop information for each destination at each router
- Idea:
 - Tell neighbors about learned distances to all destinations

sdg // CSE/EE 461, Winter 2003

L9.10

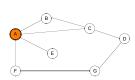

DV Algorithm

- Each router maintains a vector of costs to all destinations as well as routing table
 - Initialize neighbors with known cost, others with infinity
- Periodically send copy of distance vector to neighbors
 - On reception of a vector, if neighbors path to a destination plus neighbor cost is better, then switch to better path
 - update cost in vector and next hop in routing table
- Assuming no changes, will converge to shortest paths
 - But what happens if there are changes?

sdg // CSE/EE 461, Winter 2003

L9.11

DV Example - Initial Table at A

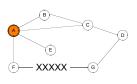


Dest	Cost	Next	
В	1 B		
С	1 C		
D	oo -		
Е	1	Е	
F	1	F	
G	•	-	

sdg // CSE/EE 461, Winter 2003

DV Example – Final Table at A

• Reached in a single iteration ... simple example


Dest	Cost	Next
В	1	В
С	1	С
D	2	С
Е	1	Е
F	1	F
G	2	F

sdg // CSE/EE 461, Winter 2003

L9.13

What if there are changes?

- One scenario: Suppose link between F and G fails
 - 1. F notices failure, sets its cost to G to infinity and tells A
 - 2. A sets its cost to G to infinity too, since it learned it from F
 - 3. A learns route from C with cost 2 and adopts it

Dest	Cost	Next
В	1	В
С	1	С
D	2	C
Е	1	Е
F	1	F
G	3	C

sdg // CSE/EE 461, Winter 2003

L9.14

Count To Infinity Problem

- Simple example
 - Costs in nodes are to reach Internet

• Now link between B and Internet fails ...

sdg // CSE/EE 461, Winter 2003

Count To Infinity Problem

- B hears of a route to the Internet via A with cost 2
- So B switches to the "better" (but wrong!) route

sdg // CSE/EE 461, Winter 2003

L9.16

Count To Infinity Problem

• A hears from B and increases its cost

sdg // CSE/EE 461, Winter 2003

L9.17

Count To Infinity Problem

- B hears from A and (surprise) increases its cost
- Cycle continues and we "count to infinity"

 $\bullet\;$ Packets caught in the crossfire loop between A and B

sdg // CSE/EE 461, Winter 2003

Split Horizon

- Solves trivial count-to-infinity problem
- Router never advertises the cost of a destination back to to its next hop - that's where it learned it from!
- Poison reverse: go even further advertise back infinity
- However, DV protocols still subject to the same problem with more complicated topologies
 - Many enhancements suggested

sdg // CSE/EE 461, Winter 2003

L9.19

Routing Information Protocol (RIP)

- DV protocol with hop count as metric

 - Infinity value is 16 hops; limits network size
 Includes split horizon with poison reverse
- Routers send vectors every 30 seconds
 - With triggered updates for link failures
 - Time-out in 180 seconds to detect failures
- RIPv1 specified in RFC1058
- www.ietf.org/rfc/rfc1058.txt • RIPv2 (adds authentication etc.) in RFC1388
 - www.ietf.org/rfc/rfc1388.txt

sdg // CSE/EE 461, Winter 2003

RIP is an "Interior Gateway Protocol"

- Suitable for small- to medium-sized networks
 - such as within a campus, business, or ISP
- Unsuitable for Internet-scale routing
 - hop count metric poor for heterogeneous links
 - 16-hop limit places max diameter on network
- Later, we'll talk about "Exterior Gateway Protocols"
 - used between organizations to route across Internet

sdg // CSE/EE 461, Winter 2003

Key Concepts

- Routing is a global process, forwarding is local one
 The Distance Vector algorithm and RIP

 Simple and distributed exchange of shortest paths.
 Weak at adapting to changes (loops, count to infinity)

sda /	CSE/	EE 461	, Winter	200

(C	٩)	
()	