
CSE 461: Sliding Windows & ARQ

Next Topic

 We begin on the Transport layer

 Focus
 How do we send information

reliably?

 Topics
 The Transport layer
 Acknowledgements and

retransmissions (ARQ)
 Sliding windows

Physical
Data Link
Network

Transport
Session

Presentation
Application

The Transport Layer

 Builds on the services of the Network layer

 Communication between processes running on hosts
 Naming/Addressing

 Stronger guarantees of message delivery
 Reliability

Example – Common Properties

TCP
 Connection-oriented
 Multiple processes
 Reliable byte-stream delivery

 In-order delivery
 Single delivery
 Arbitrarily long messages

 Synchronization
 Flow control
 Congestion control

IP
 Datagram oriented
 Lost packets
 Reordered packets
 Duplicate packets
 Limited size packets

What does it mean to be “reliable”

 How can a sender “know” the sent packet was received?
 sender receives an acknowledgement

 How can a receiver “know” a received packet was sent?
 sender includes sequence number, checksum

 Do sender and receiver need to come to consensus on what is sent and
received?
 When is it OK for the receiver’s TCP/IP stack to deliver the data to the

application?

Internet Transport Protocols

 UDP
 Datagram abstraction between processes
 With error detection

 TCP
 Bytestream abstraction between processes
 With reliability
 Plus congestion control (later this week)

SrcPort DstPort

Length Checksum

Data

0 16 31

Automatic Repeat Request (ARQ)

 Packets can be corrupted or lost. How do we add reliability?
 Acknowledgments (ACKs) and retransmissions after a timeout
 ARQ is generic name for protocols based on this strategy

Sender Receiver

Frame

ACKTi
m

eo
ut

T i
m

e

Sender Receiver

Frame

Ti
m

eo
ut

Frame

ACKTi
m

eo
ut

The Need for Sequence Numbers

 In the case of ACK loss (or poor choice of timeout) the
receiver can’t distinguish this message from the next
 Need to understand how many packets can be

outstanding and number the packets; here, a single
bit will do

Sender Receiver

Frame

ACKTi
m

eo
ut

Frame

ACKTi
m

eo
ut

Sender Receiver

Frame

ACKTi
m

eo
ut

Frame

ACKTi
m

eo
ut

Stop-and-Wait

 Only one outstanding
packet at a time

 Also called alternating
bit protocol

0

1

0

1

Sender Receiver

0

1

1

0

Limitation of Stop-and-Wait

 Lousy performance if trans. delay << prop. delay
 Max BW: B
 Actual BW: M/2D

• Example: B = 100Mb/s, M=1500Bytes, D=50ms
• Actual BW = 1500Bytes/100ms --> 15000 Bytes/s -->

~100Kb/s
• 100Mb vs 100Kb?

Data

Ack

More BW Please

 Want to utilize all available bandwidth
 Need to keep more data “in flight”
 How much? Remember the bandwidth-delay product?

 Leads to Sliding Window Protocol
 “window size” says how much data can be sent

without waiting for an acknowledgement

Sliding Window – Sender

 Window bounds outstanding data
 Implies need for buffering at sender

• Specifically, must buffer unack’ed data
 “Last” ACK applies to in-order data

 Need not buffer acked data
 Sender maintains timers too

 Go-Back-N: one timer, send all unacknowledged on timeout
 Selective Repeat: timer per packet, resend as needed

≤ Send Window

“Last” ACK’ed Last Sent

… …Sender:

Sliding Window – Timeline

Sender Receiver

Ti
m

e

Data

Ack

•Receiver ACK choices:
–Individual

•Each packet acked
–Cumulative (TCP)

•Ack says “got everything up to X-
1…”
•really, “my ack means that the next
byte I am expecting is X”

–Selective (newer TCP)
•Ack says “I got X through Y”

– Negative
•Ack says “I did not get X”

Sliding Window – Receiver

 Receiver buffers too:
 data may arrive out-of-order
 or faster than can be consumed by receiving process

 No sense having more data on the wire than can be buffered at the
receiver.
 In other words, receiver buffer size should limit the sender’s

window size

 <= Receive Window

Last byte read
(by app)

Largest Acceptable

… …Receiver:

Flow Control

 Sender must transmit data no faster than it can be consumed by receiver
 Receiver might be a slow machine
 App might consume data slowly

 Accomplish by adjusting the size of sliding window used at the sender
 sender adjusts based on receiver’s feedback about available buffer

space
 the receiver tells the sender an “Advertised Window”

 <= Receive Window

Last byte read Largest Acceptable

… …

Sender and Receiver Buffering

Sending application

LastByteWritten

LastByteSentLastByteAcked

= available buffer

LastByteAcked <= LastByteSent
LastByteSent <= LastByteWritten

Older bytes Newer bytes

These bytes
have
not shown
up yet.

Receiving application

LastByteRead

LastByteRcvdNextByteExpected

= buffer in use

LastByteRead < NextByteExpected
NextByteExpected <= LastByteRvcd+1

== if data arrives in order
else start of first gap.

These bytes
have gone
to the app.

Older bytes Newer bytes

Flow Control

To accomplish this, receiver advertises the following window size:
• AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected - 1) - LastByteRead)
• “All the buffer space minus the buffer space that’s in use.”

MaxRcvBufferReceiver:

LastByteRcvd

NextByteExpected

LastByteRead

Sender: MaxSndBuffer

LastByteWritten

LastByteSent

LastByteAcked

Receiver’s goal: always ensure that LastByteRcvd - LastByteRead <= MaxRcvBuffer

• in other words, ensure it never needs to buffer more than MaxRcvBuffer data

Flow control on the receiver

 As data arrives:
 receiver acknowledges it so long as all preceding bytes

have also arrived
 ACKs also carry a piggybacked AdvertisedWindow
 So, an ACK tells the sender:

1. All data up to the ACK’ed seqno has been received
2. How much more data fits in the receiver’s buffer, as of receiving the

ACK’ed data

 AdvertisedWindow:
 shrinks as data is received
 grows as receiving app. reads the data from the buffer

Flow Control On the Sender

OK to send that which there is room for, which is that which was advertised (AdvertisedWindow)
minus that which I’ve already sent since receiving the last advertisement.

MaxRcvBufferReceiver:

LastByteRcvd

NextByteExpected

LastByteRead

Sender: MaxSndBuffer

LastByteWritten

LastByteSent

LastByteAcked

Sender’s goal: always ensure that LastByteSent - LastByteAcked <= AdvertisedWindow

• in other words, don’t sent that which is unwanted

Notion of “EffectiveWindow”: how much new data it is OK for sender to currently send
• EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

Sending Side

 As acknowledgements arrive:
 advance LastByteAcked
 update AdvertisedWindow
 calculate new EffectiveWindow

• If EffectiveWindow > 0, it is OK to send more data

 One last detail on the sender:
 sender has finite buffer space as well

• LastByteWritten - LastByteAcked <= MaxSendBuffer

 OS needs to block application writes if buffer fills
• i.e., block write(y) if

(LastByteWritten - LastByteAcked) + y > MaxSendBuffer

Example – Exchange of Packets

SEQ=1

SEQ=2

SEQ=3
SEQ=4

ACK=2; WIN=3

ACK=3; WIN=2

ACK=4; WIN=1

ACK=5; WIN=0

Receiver has
buffer of size 4
and application
doesn’t readStall due to

flow control
here

T=1

T=2

T=3

T=4

T=5

T=6

Example – Buffer at Sender

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

T=1

T=2

T=3

T=4

T=5

T=6

=acked

=sent

=advertised

Sliding Window Functions

 Sliding window is a mechanism
 It supports multiple functions:

 Reliable delivery
• If I hear you got it, I know you got it.
• ACK (Ack # is “next byte expected”)

 In-order delivery
• If you get it, you get it in the right order.
• SEQ # (Seq # is “the byte this is in the sequence”)

 Flow control
• If you don’t have room for it, I won’t send it.
• Advertised Receiver Window
• AdvertisedWindow is amount of free space in buffer

Key Concepts

 Transport layer allows processes to communicate with
stronger guarantees, e.g., reliability

 Basic reliability is provided by ARQ mechanisms
 Stop-and-Wait through Sliding Window plus

retransmissions

