
CSE/EE 461
Getting Started with Networking

Basic Concepts

 A PROCESS is an executing program somewhere.
 Eg, “./a.out”

 A MESSAGE contains information sent by one PROCESS to ANOTHER
 Eg, “please get www.cs.washington.edu/index.html”

 A COMMUNICATIONS ENDPOINT is the name of some source or destination
of a message
 Host: www.cs.washington.edu, Port: 80

 A PROTOCOL is the SET-OF-RULES governing the transmission of
MESSAGES
 Protocol: TCP/IP

 A MESSAGING-API is the programming interface used by PROCESSES to
send/receive MESSAGES

 Typically,
 OS implements the PARTS IN RED
 Application provides/consumes the MESSAGES.

Example: TCP Delivery

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment
Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

OS

APP

The API

Unix SOCKETS

Berkeley Sockets

 Networking protocols are implemented as part of the OS
 The networking API exported by most OS’s is the socket interface
 Originally provided by BSD 4.1c ~1982.

 The principal abstraction is a socket
 Point at which an application attaches to the network
 Defines operations for creating connections, attaching to network,

sending/receiving data, closing.

 Two primary protocols used
 Reliable Connections (TCP)

• Like a telephone
 Unreliable Datagrams (UDP)

• Like postcards

The Client/Server Paradigm

 A Server is a long lived process that LISTENS in at some well-known
COMMUNICATIONS-ENDPOINT
 Awaiting a new request
 Satisfy the new request
 Send a response
 Do it again

 A Client is a (possibly short lived) process that makes requests on Servers
 Format a message containing the request
 Send the message to the Server
 Await the response
 Process the response

 Classic Example:
 WWW

• Web Servers (Apache, IIS, etc)
• Web Clients (IE, Safari, Firefox)

 Clients CONNECT to SERVERS by means of an OS API

Client/Server Connection API
Server

Socket()

Bind()
Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishment.

Data (request)

Data (reply)

Structure

 Server
 Make a “rendezvous socket” on

which to accept requests
• socket

 Associate an “address” with that
socket so that others can submit
requests

• bind
 Ready the socket for requests

• listen
 Await a request on the

rendezvous socket
• accept

– Creates a SECOND socket
 Read the request (from the

SECOND socket)
• read

 Do the request
• XX

 Send the response
• write

 Client
 Make a local “socket” on

which to send requests to the
rendezvous address

• socket

 Connect to the rendezvous
address by means of the local
socket

• connect
 Send the request

• write

 Await the response
• read

Socket call

 Means by which an application attached to the network
 #include <sys/socket.h>…

 int socket(int family, int type, int protocol)
 Family: address family (protocol family)

 AF_UNIX, AF_INET, AF_NS, AF_IMPLINK

 Type: semantics of communication
 SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
 Not all combinations of family and type are valid

 Protocol: Usually set to 0 but can be set to specific value.
 Family and type usually imply the protocol

 Return value is a handle for new socket

Bind call

 Typically a server call
 Binds a newly created socket to the specified address

 int bind(int socket, struct sockaddr *address, int addr_len)
 Socket: newly created socket handle
 Address: data structure of address of local system

 IP address (host identifier) and port number (endpoint on identified
host)

 SOCKET and PORT are not the same concept
 Socket: “widget” that a process uses to manipulate its endpoint
 Port: hostwide name of a communication’s endpoint
 Address: hostname.port pair
 For comparison:

• Socket == file descriptor
• port == file name,
• address == network file name

Listen call

 Used by connection-oriented servers to indicate an
application is willing to receive connections

 Int(int socket, int backlog)
 Socket: handle of newly creates socket
 Backlog: number of connection requests that can be

queued by the system while waiting for server to
execute accept call.

Accept call

 A server call
 After executing listen, the accept call carries out a

passive open (server prepared to accept connects).
 int accept(int socket, struct sockaddr *address, int addr_len)

 It blocks until a remote client carries out a connection
request.

 When it does return, it returns with a new socket that
corresponds with new connection and the address
contains the clients address

Connect call

 A client call
 Client executes an active open of a connection

 int connect(int socket, struct sockaddr *address, int addr_len)
 How does the OS know where the server is?

 Call does not return until the three-way handshake
(TCP) is complete

 Address field contains remote system’s address
 Client OS usually selects random, unused port

Input and Output

 After connection has been made, application uses send/recv to data
 int send(int socket, char *message, int msg_len, int flags)

 Send specified message using specified socket

 int recv(int socket, char *buffer, int buf_len, int flags)
 Receive message from specified socket into specified buffer

 Or can use read/write
 int read(int socket, char* buffer, int len)
 int write(int socket, char* buffer, int len);

 Or can sometimes use sendto/recvfrom
 Or can use sendmsg, recvmsg for “scatter/gather”

Connection Establishment

 Both sender and receiver must be ready before we start
to transfer the data
 Sender and receiver need to agree on a set of

parameters
 e.g., the Maximum Segment Size (MSS)

 This is signaling
 It sets up state at the endpoints
 Compare to “dialing” in the telephone network

 In TCP a Three-Way Handshake is used

Sample Code

SERVER

CLIENT

Running it…

Run 1

Run 2

How are these two runs different?

dogmatix.dyn.cs.washington.edu arvind% ./server 9998 &
[1] 736
dogmatix.dyn.cs.washington.edu arvind% ./client localhost 9998
Please enter the message: This is a test
Here is the message: This is a test

I got your message

dogmatix.dyn.cs.washington.edu arvind% ./server 9999 &
[1] 736
dogmatix.dyn.cs.washington.edu arvind% ./client dogmatix 9999
Please enter the message: This is a test
Here is the message: This is a test

I got your message

Observing Communication

Messages are sent via NETWORK
INTERFACES

eg, “lo0”, “en0”
The tcpdump program allows us to
observe network traffic.

“man tcpdump” for more
information!

