
CSE 461: Error Detection and
Correction

Next Topic

 Error detection and correction

 Focus: How do we detect and correct
messages that are garbled during
transmission?

 The responsibility for doing this cuts
across the different layers

Physical
Data Link
Network

Transport
Session

Presentation
Application

Errors and Redundancy

 Noise can flip some of the bits we receive
 We must be able to detect when this occurs!
 Who needs to detect it? (links/routers, OSs, or

apps?)

 Basic approach: add redundant data
 Error detection codes allow errors to be recognized
 Error correction codes allow errors to be repaired too

Motivating Example

 A simple error detection scheme:
 Just send two copies. Differences imply errors.

 Question: Can we do any better?
 With less overhead
 Catch more kinds of errors

 Answer: Yes – stronger protection with fewer bits
 But we can’t catch all inadvertent errors, nor malicious ones

 We will look at basic block codes
 K bits in, N bits out is a (N,K) code
 Simple, memoryless mapping

Detection vs. Correction

 Two strategies to correct errors:
 Detect and retransmit, or Automatic Repeat reQuest.

(ARQ)
 Error correcting codes, or Forward Error Correction

(FEC)
 Retransmissions typically at higher levels (Network+).

Why?

 Question: Which should we choose?

Retransmissions vs. FEC

 The better option depends on the kind of errors and the
cost of recovery

 Example: Message with 1000 bits, Prob(bit error) 0.001
 Case 1: random errors
 Case 2: bursts of 1000 errors
 Case 3: real-time application (teleconference)

The Hamming Distance

 Errors must not turn one valid codeword into another valid
codeword, or we cannot detect/correct them.

 Hamming distance of a code is the smallest number of bit
differences that turn any one codeword into another
 e.g, code 000 for 0, 111 for 1, Hamming distance is 3

 For code with distance d+1:
 d errors can be detected, e.g, 001, 010, 110, 101, 011

 For code with distance 2d+1:
 d errors can be corrected, e.g., 001 000

Parity

 Start with n bits and add another so that the total
number of 1s is even (even parity)
 e.g. 0110010 01100101
 Easy to compute as XOR of all input bits

 Will detect an odd number of bit errors
 But not an even number

 Does not correct any errors

2D Parity

 Add parity row/column to array of
bits

 How many simultaneous bit errors
can it detect?

 Which errors can it correct?

0101001 1
1101001 0
1011110 1
0001110 1
0110100 1
1011111 0

1111011 0

Checksums

 Used in Internet protocols (IP, ICMP, TCP, UDP)
 Basic Idea: Add up the data and send it along with sum

 Algorithm:
 checksum is the 1s complement of the 1s

complement sum of the data interpreted 16 bits at a
time (for 16-bit TCP/UDP checksum)

 1s complement: flip all bits to make number negative
 Consequence: adding requires carryout to be added

back

CRCs (Cyclic Redundancy Check)

 Stronger protection than checksums
 Used widely in practice, e.g., Ethernet CRC-32
 Implemented in hardware (XORs and shifts)

 Algorithm: Given n bits of data, generate a k bit check
sequence that gives a combined n + k bits that are
divisible by a chosen divisor C(x)

 Based on mathematics of finite fields
 “numbers” correspond to polynomials, use modulo

arithmetic
 e.g, interpret 10011010 as x7 + x4 + x3 + x1

How is C(x) Chosen?

 Mathematical properties:
 All 1-bit errors if non-zero xk and x0 terms
 All 2-bit errors if C(x) has a factor with at least three

terms
 Any odd number of errors if C(x) has (x + 1) as a

factor
 Any burst error < k bits

 There are standardized polynomials of different degree
that are known to catch many errors
 Ethernet CRC-32:

100000100110000010001110110110111

Reed-Solomon / BCH Codes

 Developed to protect data on magnetic disks
 Used for CDs and cable modems too
 Property: 2t redundant bits can correct <= t errors
 Mathematics somewhat more involved …

Key Concepts

 Redundant bits are added to messages to protect
against transmission errors.

 Two recovery strategies are retransmissions (ARQ) and
error correcting codes (FEC)

 The Hamming distance tells us how much error can
safely be tolerated.

