CSE 461: Multiple Access Networks

1. ALOHA

- Wireless links between the Hawaiian islands in the 70s
- Want distributed allocation
 - no special channels, or single point of failure
- Aloha protocol:
 - Just send when you have data!
 - There will be some collisions of course ...
 - Detect error frames and retransmit a random time later
- Simple, decentralized and works well for low load
 - For many users, analytic traffic model, max efficiency is 18%

Binary Exponential Backoff

- Build on 1-persistent CSMA/CD
- On collision: jam and exponential backoff
- Backoff:
 - First collision: wait 0 or 1 frame times at random and retry
 - Second time: wait 0, 1, 2, or 3 frame times
 - Nth time (N<=10): wait 0, 1, ..., 2^N-1 times
 - Max wait 1023 frames, give up after 16 attempts
 - Scheme balances average wait with load

Key Concepts

- Wireless communication is relatively complex
 - No collision detection, hidden and exposed terminals
- There are contention-free MAC protocols
 - Based on turn taking and reservations, not randomization