CSE 461: Bridging LANs

Next Topic -- Switching (a.k.a. Bridging)

- Focus:
- What to do when one shared LAN isn't big enough?
- Interconnecting LANs
- Bridges and LAN switches
- A preview of the Network layer

Application
Presentation
Session
Transport
Network
Data Link
Physical

Limits of a LAN

- One shared LAN can limit us in terms of:
- Distance
- Number of nodes
- Performance

- How do we scale to a larger, faster network?
- We must be able to interconnect LANs

Switching (a.k.a. Bridging)

- Transferring a packet from one LAN to another LAN
- Build an "extended LAN"
- Different varieties of switching
- Packet switched vs. circuit switched
- Connection vs. Connectionless
- We'll focus on connectionless, packet switched
- Ethernet

Bridges and Extended LANs

- "Transparently" interconnect LANs with bridge
- Receive frames from each LAN and forward to the other
- Each LAN is its own collision domain; bridge isn't a repeater
- Could have many ports

Learning Bridges

- To optimize overall performance:
- Shouldn't forward $A \rightarrow B$ or $C \rightarrow D$, should forward $A \rightarrow C$ and $D \rightarrow B$

- How does the bridge know?
- Learn who is where by observing source addresses and prune
- Forward using destination address; age for robustness

Why stop at one bridge?

- Allows you to incrementally build out network, across organizations
- What problems could arise?
- How to solve them?

High Level Outline of a Solution

- Take the set of networks and turn off some of the ports in the bridges
- Goal is to have the bridges form a spanning tree
- Spanning tree means that there are no cycles
- When a bridge doesn't know where is the destination of the packet:
- It floods the packet
- Flooding takes place along the spanning tree
- Over time, bridges learn which links of the spanning tree can be used to route to a given destination

Spanning Tree Example

- Spanning tree uses select bridge ports so there are no cycles
- Prune some ports c

Spanning Tree

- Compute ST with a bridge as root such that
- Root forwards onto all of its outgoing ports
- Other bridges forward TO the root if a packet is coming from a bridge further from the root, else they forward away from the root
- Packet traversal: forwards (UP)* then (DOWN*)

(a)

(b)

Spanning tree with learning

- Once the spanning tree is in place...
- the bridge uses the regular learning algorithm to figure out which ports to forward / flood packet on
- Job of spanning tree algorithm is to disable some ports to eliminate cycles

Spanning Tree Algorithm

- Distributed algorithm to compute spanning tree
- Robust against failures, needs no organization
- Developed by Radia PerIman at DEC
- IEEE 802.1 spec
- http://www1.cs.columbia.edu/~ji/F02/ir02/p44-perIman.pdf
- Outline: Goal is to turn some bridge ports off

1. Elect a root node of the tree (lowest address)
2. Grow tree as shortest distances from the root (using lowest address to break distance ties)

- All done by bridges sending periodic configuration messages over ports for which they are the "best" path
- Then turn off ports that aren't on "best" paths

Algorithm Overview

- Each bridge has a unique id
- e.g., B1, B2, B3
- Select the bridge with the smallest id as root
- Select bridge on each LAN that is closest to the root as that LAN's designated bridge
- use ids to break ties
- Each bridge forwards frames over each LAN on which it is
 the designated bridge

Algorithm continued

- Bridges exchange configuration messages, containing:
- id for bridge sending the message
- id for what the sending bridge believes to be the root bridge
- distance (hops) from sending bridge to root bridge
- Each bridge records current best configuration message for each port

Algorithm continued

- Initially, each bridge believes it is the root
- when learn not root, stop generating configuration messages
- instead, forward root's configuration message
- incrementing distance field by 1
- in steady state, only root generates configuration messages

Algorithm More...

- When bridge learns it is not designated bridge on LAN, stop forwarding configuration messages
- in steady state, only designated bridges forward configuration messages
- Root bridge continues to send configuration messages periodically
- If a bridge does not receive config. message after a period of time:
- assumes topology has changed
- starts generating configuration messages claiming to be root

Algorithm Example

Message format: (root, dist-to-root, sending bridge)
Sample messages sequences to and from $B 3$:

1. $B 3$ sends $(B 3,0, B 3)$ to $B 2$ and $B 5$
2. $B 3$ receives $(B 2,0, B 2)$ and ($B 5,0, B 5) \mathrm{C}$ and accepts B2 as root
3. $B 3$ sends $(B 2,1, B 3)$ to $B 5$
4. $B 3$ receives $(B 1,1, B 2)$ and ($B 1,1, B 5$) and accepts B1 as root
5. B3 could send (B1, 2, B3) but doesn't as its nowhere "best" $B 2$ and B5 are better choices. so B 3 is NOT a designated bridge
6. $B 3$ receives $(B 1,1, B 2)$ and $(B 1,1, B 5)$ again ... stable
 B3 turns off data forwarding to LANs A and C

Some other tricky details

- Configuration information is aged
- If the root fails a new one will be elected
- Reconfiguration is damped
- Adopt new spanning trees slowly to avoid temporary loops

LAN Switches

- LAN switches are multi-port bridges
- Modern, high performance form of bridged LANs
- Looks like a hub, but frames are switched, not shared
- Every host on a separate port, or can combine switches

Limitations of Bridges/Switches

- LAN switches form an effective small-scale network
- Plug and play for real!
- Why can't we build a large network using bridges?
- Little control over forwarding paths
- Size of bridge forwarding tables grows with number of hosts
- Broadcast traffic flows freely over whole extended LAN
- Spanning tree algorithm limits reconfiguration speed

Key Concepts

- We can overcome LAN limits by interconnection
- Bridges and LAN switches
- But there are limits to this strategy ...

