



## IP Addresses and IP Datagram Forwarding

- How the source gets the packet to the destination:
   if source is on same network (LAN) as destination, source sends packet
   directly to destination host
  - else source sends data to a router on the same network as the source
    router will forward packet to a router on the next network over
  - and so on...
  - until packet arrives at router on same network as destination; then, router sends packet directly to destination host Requirements
  - every host needs to know IP address of the router on its LAN
     every router needs a routing table to tell it which neighboring network to forward a given packet on

# Forwarding and Routing

- Forwarding is the process that each router goes through for every packet to send it on its way
   Involves local decisions
- Routing is the process that all routers go through to calculate the routing tables
  - Involves global decisions





#### **Routing Questions/Challenges**

- How to choose best path? What is best path?
- How to scale to millions of users?
- How to adapt to failures or changes? Node and link failures, plus message loss
  - We will use distributed algorithms

#### Some Pitfalls

- Using global knowledge is challenging
  - Hard to collect
  - Can be out-of-date
  - Needs to summarize in a locally-relevant way
- Inconsistencies in local /global knowledge can cause:
   Loops (black holes)
  - Oscillations, esp. when adapting to load



### **Distance Vector Routing**

- Assume:
- Each router knows only address/cost of neighbors
  Goal:
  - Calculate routing table of next hop information for each destination at each router
- Idea:
- Tell neighbors about learned distances to all destinations



Assuming no changes, will converge to shortest paths
But what happens if there are changes?















#### **Split Horizon**

- Solves trivial count-to-infinity problem
- Router never advertises the cost of a destination back to to its next hop – that's where it learned it from!
- Poison reverse: go even further advertise back infinity
- However, DV protocols still subject to the same problem with more complicated topologies
   Many enhancements suggested

#### **Routing Information Protocol (RIP)**

- DV protocol with hop count as metric
   Infinity value is 16 hops; limits network size
   Includes split horizon with poison reverse
- Routers send vectors every 30 seconds
  - With triggered updates for link failures
- Time-out in 180 seconds to detect failures
- RIPv1 specified in RFC1058

   www.ietf.org/rfc/rfc1058.txt

   RIPv2 (adds authentication etc.) in RFC1388
  - www.ietf.org/rfc/rfc1388.txt

### RIP is an "Interior Gateway Protocol"

- Suitable for small- to medium-sized networks
   such as within a campus, business, or ISP
- Unsuitable for Internet-scale routing
  - hop count metric poor for heterogeneous links 16-hop limit places max diameter on network
- Later, we'll talk about "Exterior Gateway Protocols"
   used between organizations to route across Internet

### **Key Concepts**

- Routing is a global process, forwarding is local one
- The Distance Vector algorithm and RIP
  - Simple and distributed exchange of shortest paths.
  - Weak at adapting to changes (loops, count to infinity)