| CSE 461: Distance Vector Routing |
| :---: |
|  |
|  |
|  |
|  |
|  |


| Next Topic |  |
| :---: | :---: |
| - Focus <br> - How do we calculate routes for packets? <br> - Routing is a network layer function <br> - Routing Algorithms <br> - Distance Vector routing (RIP) | Application <br> Presentation <br> Session <br> Transport <br> Network <br> Data Link <br> Physical |

## IP Addresses and IP Datagram

## Forwarding

- How the source gets the packet to the destination:
- if source is on same network (LAN) as destination, source sends packet directly to destination host
- else source sends data to a router on the same network as the source
- router will forward packet to a router on the next network over
- and so on...
- until packet arrives at router on same network as destination; then, router sends packet directly to destination hos
- Requirements
- every host needs to know IP address of the router on its LAN
every router needs a routing table to tell it which neighboring network to forward a given packet on


## Forwarding and Routing

- Forwarding is the process that each router goes through for every packet to send it on its way
- Involves local decisions
- Routing is the process that all routers go through to calculate the routing tables
- Involves global decisions


## What's in a Routing Table?

- The routing table at A , for example, lists at a minimum the next hops for the different destinations

| Dest | Next <br> Hop |
| :---: | :---: |
| B | B |
| C | C |
| D | C |
| E | E |
| F | E |
| G | F |



## Kinds of Routing Schemes

- Many routing schemes have been proposed/explored!
- Distributed or centralized
- Hop-by-hop or source-based
- Deterministic or stochastic
- Single or multi-path
- Static or dynamic route selection
. Internet is to the left $(\cdot)$

| Routing Questions/Challenges |
| :--- |
| - How to choose best path? What is best path? |
| - How to scale to millions of users? |
| - How to adapt to failures or changes? |
| - Node and link failures, plus message loss |
| - We will use distributed algorithms |
|  |


| Some Pitfalls |
| :--- |
| - Using global knowledge is challenging |
| - Hard to collect |
| - Can be out-of-date |
| - Needs to summarize in a locally-relevant way |
| - Inconsistencies in local /global knowledge can cause: |
| - Loops (black holes) |
| - Oscillations, esp. when adapting to load |
|  |



## Distance Vector Routing

- Assume:
- Each router knows only address/cost of neighbors
- Goal:
- Calculate routing table of next hop information for each destination at each router
- Idea:
- Tell neighbors about learned distances to all destinations


## DV Algorithm

DV Example - Initial Table at A

- Each router maintains a vector of costs to all destinations as well as routing table
- Initialize neighbors with known cost, others with infinity
- Periodically send copy of distance vector to neighbors
- On reception of a vector, if neighbors path to a destination plus neighbor cost is better, then switch to better path - update cost in vector and next hop in routing table
- Assuming no changes, will converge to shortest paths
- But what happens if there are changes?

| DV Example - Final Table at A |  |  |  |
| :---: | :---: | :---: | :---: |
| - Reached in a single iteration ... simple example |  |  |  |
|  | Dest | Cost | Next |
|  | B | 1 | B |
|  | C | 1 | C |
|  | D | 2 | C |
|  | E | 1 | E |
|  | F | 1 | F |
|  | G | 2 | F |


| What if there are changes? |  |  |  |
| :---: | :---: | :---: | :---: |
| - One scenario: Suppose link between $F$ and $G$ fails <br> 1. F notices failure, sets its cost to $G$ to infinity and tells $A$ <br> 2. A sets its cost to $G$ to infinity too, since it learned it from $F$ <br> 3. A learns route from $C$ with cost 2 and adopts it |  |  |  |
|  | Dest | Cost | Next |
|  | B | 1 | B |
|  | C | 1 | C |
|  | D | 2 | C |
|  | E | 1 | E |
|  | F | 1 | F |
|  | G | 3 | C |



## Count To Infinity Problem

- B hears of a route to the Internet via A with cost 2
- So B switches to the "better" (but wrong!) route



## Count To Infinity Problem

- B hears from A and (surprise) increases its cost
- Cycle continues and we "count to infinity"

- Packets caught in the crossfire loop between $A$ and $B$


## Split Horizon

- Solves trivial count-to-infinity problem
- Router never advertises the cost of a destination back to to its next hop - that's where it learned it from!
- Poison reverse: go even further - advertise back infinity
- However, DV protocols still subject to the same problem with more complicated topologies
- Many enhancements suggested


## Routing Information Protocol (RIP)

- DV protocol with hop count as metric
- Infinity value is 16 hops; limits network size
- Includes split horizon with poison reverse
- Routers send vectors every 30 seconds
- With triggered updates for link failures
- Time-out in 180 seconds to detect failures
- RIPv1 specified in RFC1058
- www.ietf.org/rfc/rfc1058.txt
- RIPv2 (adds authentication etc.) in RFC1388
- www.ietf.org/rfc/rfc1388.txt

| RIP is an "Interior Gateway Protocol" |
| :---: |
| - Suitable for small- to medium-sized networks <br> - such as within a campus, business, or ISP <br> - Unsuitable for Internet-scale routing <br> - hop count metric poor for heterogeneous links <br> - 16-hop limit places max diameter on network <br> - Later, we'll talk about "Exterior Gateway Protocols" <br> - used between organizations to route across Internet |

## Key Concepts

- Routing is a global process, forwarding is local one
- The Distance Vector algorithm and RIP
- Simple and distributed exchange of shortest paths.
- Weak at adapting to changes (loops, count to infinity)

