
Section 6: More Wireshark, advanced SSH
CSE 461 Computer Networks

Wireshark
● https://courses.cs.washington.edu/courses/cse461/20au/section-data/461-demo.pcap

○ Open this file in wireshark

● https://courses.cs.washington.edu/courses/cse461/20au/section-data/pcap-demo.md

https://courses.cs.washington.edu/courses/cse461/20au/section-data/461-demo.pcap
https://courses.cs.washington.edu/courses/cse461/20au/section-data/pcap-demo.md

Wireshark Filters
● ip

○ ip.addr == <address>
● icmp
● ipv6
● icmpv6
● tcp

○ tcp.port == 80
● udp
● dns

○ dns.qry.name == website.com
● http
● tls (https)

Combine filters with “&&”, “||”, “^^”, “!”
Compare values with “==”, “<”, “>”, “matches”, “contains”, and more
https://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

https://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

(Not that) advanced SSH

ssh user@server -p port

SSH Keys

SSH Encryption

● SSH uses symmetrical encryption
● The session key is negotiated securely under asymmetrical encryption, upon

each connection
● SSH “keys” (or passwords) are used for key negotiation
● We will learn more about cryptography in lecture

○ Take CSE 484 (Security) and CSE 490C (Cryptography) if you are interested

● We will focus on the more practical side of SSH

Why keys over passwords?

● More secure than passwords
○ Keys have completely (?) random bits
○ Passwords are vulnerable to dictionary attacks

● Easier to manage
○ Keys are kept locally and supplied automatically when you need them
○ Remembering passwords can be a pain
○ Keys can be revoked easily

Generating an SSH key pair

● To generate a key pair (RSA, by default): ssh-keygen [-t type]
○ We recommend using Ed25519 over RSA: ssh-keygen -t ed25519
○ Ed25519 is faster and more secure, but a lot of people are still using RSA
○ You probably have these already if you have used the CSE Gitlab

● By default, generates keys under ~/.ssh/
○ Public key: id_{rsa|ed25519|...}.pub
○ Private key: id_{rsa|ed25519|...}
○ Keep your private keys private

● Optional passphrase to protect your private keys
○ Additional passphrase-based encryption, so adversaries can’t get

your private keys even if your machine is compromised
○ Can be skipped by not typing in a password and pressing Enter

Authenticating with your SSH key
● Before you can use your keys, you need to install them on the server

○ i.e. Add your public key as a single line to ~/.ssh/authorized_keys on the server
■ <protocol> <public key text> <annotation>

● ssh-ed25519 <text from ssh-ed25519.pub> starikov@desktop
○ You can edit the file manually by logging in with your password
○ Or use ssh-copy-id [-i path/to/private/key] someserver (on macOS and Linux)

● Use -i path/to/private/key to specify a key when SSHing
○ Your id_{rsa|ed25519|dsa|...} key under ~/.ssh/ is used by default
○ Or use the IdentityFile option in SSH config

● When you log in, the server looks up your public key in authorized_keys and
lets you in if there is a match

Server Verification (Known hosts)

● The client stores the key of every server it knows under ~/.ssh/known_hosts
● SSH stops you from connecting to a server if the server’s key doesn’t match

the one in known_hosts
○ This is to prevent someone from impersonating the server you have previously used

■ Will occur if you install a new OS at the same IP address
■ Or if the ssh server keys are changed

○ If you trust the new server identity, simply delete its key from known_hosts
■ Can be done by deleting the appropriate line manually
■ ssh-keygen -R "hostname"

ssh-agent

● Like a password manager for SSH keys
● eval `ssh-agent`

○ Starts ssh agent
○ To automatically start, place this in .bashrc:

● ssh-add [path/to/private/key] to add key to ssh-agent
○ By default adds your id_{rsa|ed25519|dsa|...}

● The passphrase is remembered for the entire session
● The ssh agent can be forwarded over SSH

○ ssh -A
○ SSH config file:

■ ForwardAgent yes
■ AddKeysToAgent yes

if [-z "$SSH_AUTH_SOCK"] ; then

eval `ssh-agent -s`

ssh-add

fi

SSH Config File

SSH Config File

● Per user config at ~/.ssh/config (create if doesn’t exist)
● Allows you to define hosts aliases with configurations

Host attu attu? recycle bicycle tricycle
 Hostname %h.cs.washington.edu
 Port 22
 User starikov
 IdentityFile ~/.ssh/id_ed25519

Simple host configs

With the config above, I can just run ssh attu to connect to attu.

Equivalent to
ssh starikov@attu.cs.washington.edu -p 22 -i ~/.ssh/id_ed25519

`Hostname` also works with IP addresses

Host attu
 Hostname attu.cs.washington.edu
 Port 22
 User starikov
 IdentityFile ~/.ssh/id_ed25519

Host mininet
 Hostname localhost
 Port 2222
 User mininet

A slightly more complicated config

This config defines many hosts at the same time, including a wildcard (attu?).
Note that %h will be replaced by the actual value of “Host.”

With this config, I can do ssh attu8 to connect to attu8.cs.washington.edu.

Host attu attu? recycle bicycle tricycle
 Hostname %h.cs.washington.edu
 Port 22
 User starikov
 IdentityFile ~/.ssh/id_ed25519

SSH Port Forwarding/Tunneling

Local Forwarding (-L)
● Opens a local port that forwards to a remote port
● Syntax: -L port:host:hostport
● Use case

○ I have a service running on the server but it’s bound to localhost only on the remote server
■ ssh -L 8888:localhost:8888 server

○ Service is on a private network that the server can reach, but my local computer cannot
■ I can ssh into the server and connect to a service running on privateServer
■ ssh -L 8888:privateServer:8888 server

● SSH Config:
○ LocalForward 8888 privateServer:8888

● VSCode’s Remote SSH extension provides this feature
○ Ctrl+Shift+P and search for “Forward a Port”

Remote Forwarding (-R)

● Opens a port on remote that forwards to a local port
● Syntax: -R port:host:hostport
● Requires “GatewayPorts yes” to be enabled on SSH server (sshd_config)
● Use case

○ Access desktop ssh (localhost:22) from publicserver.com:2222
■ ssh -R 2222:localhost:22 publicserver.com

○ Access local mininet VM from publicserver.com:2222
■ ssh -R 2222:192.168.56.101:22 publicserver.com

● Port Forwarded Mininet: ssh -R 2222:localhost:2222 publicserver.com

● SSH Config:
○ RemoteForward 2222 192.168.56.101:22

Dynamic Forwarding (-D)
● Uses SSH as a SOCKS proxy
● Syntax: -D port
● Use case

○ Use as a proxy server for accessing hosts from the SSH server’s connection
■ Can be used to access multiple hosts that are on an internal network
■ Can also be used to access websites from the IP address of the SSH server

● Libraries allow access without a paywall/login when using a UW IP address
● Firefox allows you to connect to a SOCKS proxy

○ ssh -D 1080 attu
■ Sets up a SOCKS proxy on localhost:1080 that proxies connections through attu

○ SSH Config:
■ DynamicForward localhost:1080

SSH Jump Host

Jump Host (-J)

● Jump through intermediate hosts to the final SSH destination
● Syntax: -J jumphost
● Use case

○ You want to connect to a host over SSH behind a LAN externally, but only have SSH access to
another server in that network

○ ssh -J attu1 attu2
■ Equivalent to:

1. ssh -L 2200:attu2:22 attu1
2. ssh -p 2200 localhost

○ ssh -J attu1,attu2,attu3,attu4 attu5
■ Jumps from attu1 to attu2 to attu3 to attu4 and finally attu5.

SSH Config for Jump Host Proxy

First jumphost. Directly reachable
Host alphajump
 HostName jumphost1.example.org

Second jumphost. Only reachable via jumphost1.example.org
Host betajump
 HostName jumphost2.example.org
 ProxyJump alphajump

Host only reachable via alphajump and betajump
Host behindalphabeta
 HostName behindalphabeta.example.org
 ProxyJump betajump

X11 Forwarding

X11 Forwarding (-X)

● Lets you run GUI apps over SSH
● Syntax: -X
● Needs “X11Forwarding yes” enabled on server (sshd_config)
● You might need to install an “X server” on the client if you are on Windows or

macOS
○ XQuartz for macOS (and add XAuthLocation /usr/X11/bin/xauth to your SSH config)
○ Xming or vcxsrv for Windows

● ssh -X attu
● SSH Config:

○ ForwardX11 yes

Other useful SSH tricks
● VS Code Remote SSH

○ A lot of you have been using it
○ Super useful for debugging code on remote machine

● tmux
○ Keep sessions running even if you disconnect

■ tmux attach will reopen a running tmux session
○ Split the terminal into smaller panels and create multiple windows
○ Very configurable: customizable hotkeys, mouse mode, and more!

● See man ssh or tldr ssh to learn more about advanced SSH features!

