Lectures: Section A Section A Section A Who Shyam G gshyam a

1 ■ https://courses.cs.washington.edu/courses/cse461/20au/

Lectures:	MWF 12:30-01:20		
Section AA:	TH 01:30-02:20		
Section AB:	TH 02:30-03:20		
Section AC:	TH 03:30-04:20		
Who	Office Hours		
Shyam Gollako gshyam at cs.w			
Daniel Starikov, TA starikov at cs.washington.edu			
Mehrdad Hessar, TA mehrdadh at cs.washington.edu			
Amy Xu, TA amyxu at cs.washington.edu			
Cailin Winston, TA cailinw at cs.washington.edu			
	Milin Kodnongbua, TA milink at cs.washington.edu		
Rithik Duggempudi, TA rrd3 at cs.washington.edu			
Textbooks	Computer Networks (6E 19), Peterson [Online Book] Computer Networks (5th Edition), Andrew Tanenbaum, David Wetherall		
Class mailing list	The class email is cse461a_au20@u.washington.edu. It's updated nightly from the official registration list, and uses your u.wash email address.		

♦ About Us ♦ Search ♦ Contact Info

Textbooks

- Group of 3
- Can be same or different

Individual assignments (20%)

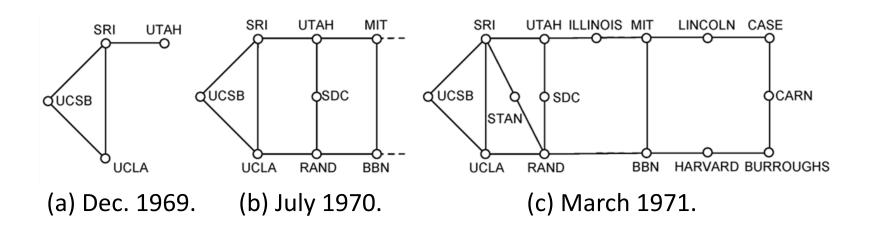
Mid term (20%)

Final (20%)

		▶ About Us	▷ Search	Contact Info
Lectures:	MWF 12:30-01:20			
Section AA:	TH 01:30-02:20			
Section AB:	TH 02:30-03:20			
Section AC:	TH 03:30-04:20			
Who	Office Hours			
Shyam Gollakota, Profes gshyam at cs.washington.e	M 01 · 30=0 2 · 20			
Daniel Starikov, TA starikov at cs.washington.edu				
Mehrdad Hessar, TA mehrdadh at cs.washingtor	edu			
Amy Xu, TA amyxu at cs.washington.ed	u			
Cailin Winston, TA cailinw at cs.washington.edu				
Milin Kodnongbua, TA milink at cs.washington.edu	1			
Rithik Duggempudi, TA rrd3 at cs.washington.edu				

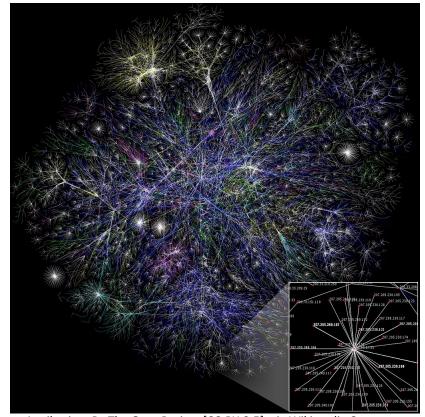
Class mailing list Class mailing list Class mailing Clas

Computer Networks (6E 19), Peterson [Online


The Main Point

- 1. To learn how the Internet works »
 - What really happens when you "browse the web"?
 - What are TCP/IP, DNS, HTTP, NAT, VPNs, 802.11 etc. anyway?
- 2. To learn the fundamentals of computer networks

Why learn about the Internet?


- Curiosity »
- 2. Impact on our world »
- 3. Job prospects!

From this experimental network ... ARPANET ~1970

Internet ~2005

- An everyday institution used at work, home, and on-the-go
- Visualization contains millions of links

Attribution: By The Opte Project [CC-BY-2.5], via Wikimedia Commons

Internet – Societal Impact

- An enabler of societal change
 - Easy access to knowledge
 - Electronic commerce
 - Personal relationships
 - Discussion without censorship

Internet – Economic impact

- An engine of economic growth
 - Advertising-sponsored search
 - "Long tail" online stores
 - Online marketplaces
 - Crowdsourcing

The Main Point (2)

- 1. To learn how the Internet works
- 2. To learn the fundamentals of computer networks
 - What hard problems must they solve?
 - What design strategies have proven valuable?

Why learn the Fundamentals?

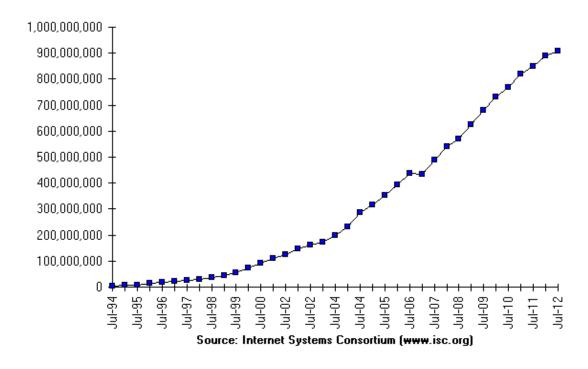
- Apply to all computer networks
- 2. Intellectual interest »
- 3. Change / reinvention »

Fundamentals – Intellectual Interest

- Example key problem: Reliability!
 - Any part of the Internet might fail
 - Messages might be corrupted
 - So how do we provide reliability?
- Reliability solutions
 - Codes to detect/correct errors
 - Routing around failures ...

Fundamentals – Intellectual Interest (2)

Key problem	Example solutions
Reliability despite failures	Codes for error detection/correction Routing around failures
Network growth and evolution	Addressing and naming Protocol layering
Allocation of resources like bandwidth	Multiple access Congestion control
Security against various threats	Confidentiality of messages Authentication of communicating parties


Fundamentals – Reinvention

- The Internet is constantly being re-invented!
 - Growth over time and technology trends drive upheavals in Internet design and usage »
- Today's Internet is different from yesterday's
 - And tomorrow's will be different again
 - But the fundamentals remain the same

Fundamentals – Reinvention (2)

Internet Domain Survey Host Count

 At least a billion Internet hosts and growing ...

Fundamentals – Reinvention (3)

Examples of upheavals in the past 1-2 decades

Growth / Tech Driver	Upheaval
Emergence of the web	Content Distribution Networks
Digital songs/videos	Peer-to-peer file sharing
Falling cost/bit	Voice-over-IP calling
Many Internet hosts	IPv6
Wireless advances	Mobile devices

Not a Course Goal

- To learn IT job skills
 - How to configure equipment
 - e.g., Cisco certifications
 - But course material is relevant,
 and we use hands-on tools

Example Uses of Networks

- Work:
 - Email, file sharing, printing, ...
- Home:
 - Movies / songs, news, calls / video
 / messaging, e-commerce, ...
- Mobile:
 - Calls / texts, games, videos, maps, information access ...

Example Uses of Networks

- Work:
 - Email file sharing nrinting, ...
- Hon What do these uses
 - tell us about why we s / video / build networks?
- Mobile:
 - Calls / texts, games, videos, maps, information access ...

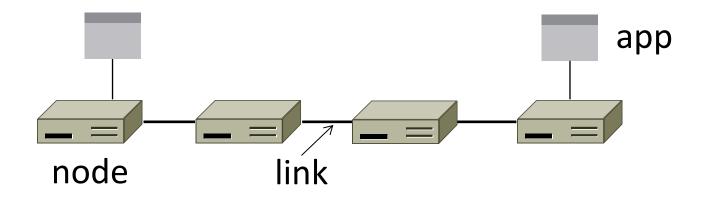
For User Communication

- From the telephone onwards:
 - VoIP (voice-over-IP)
 - Video conferencing
 - Instant messaging
 - Social networking
- → Enables remote communication
 - Need low latency for interactivity

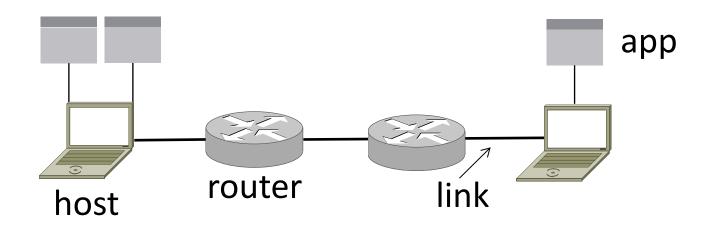
For Resource Sharing

- Many users may access the same underlying resource
 - E.g., 3D printer, search index,
 machines in the cloud

For Computer Communication


- To let computers interact with other computers
 - E.g., e-commerce, reservations

→ Enables automated information processing across different parties

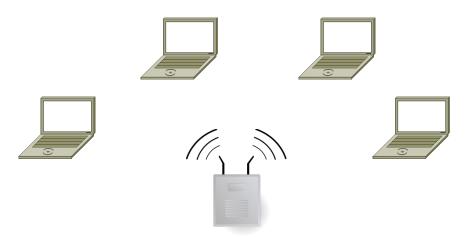

To Connect Computers to the Physical World

- For gathering sensor data, and for manipulating the world
 - E.g., webcams, location on mobile phones, door locks, ...
- This is a rich, emerging usage

Parts of a Network (2)

Parts of a Network (3)

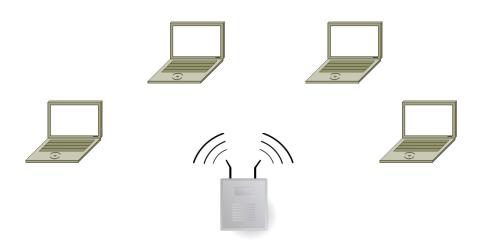
Component Names


Component	Function	Example
Application, or app, user	Uses the network	Skype, iTunes, Amazon
Host, or end-system, edge device, node, source, sink	Supports apps	Laptop, mobile, desktop
Router, or switch, node, hub, intermediate system	Relays messages between links	Access point, cable/DSL modem
<u>Link</u> , or channel	Connects nodes	Wires, wireless

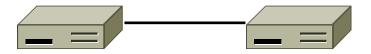
Types of Links

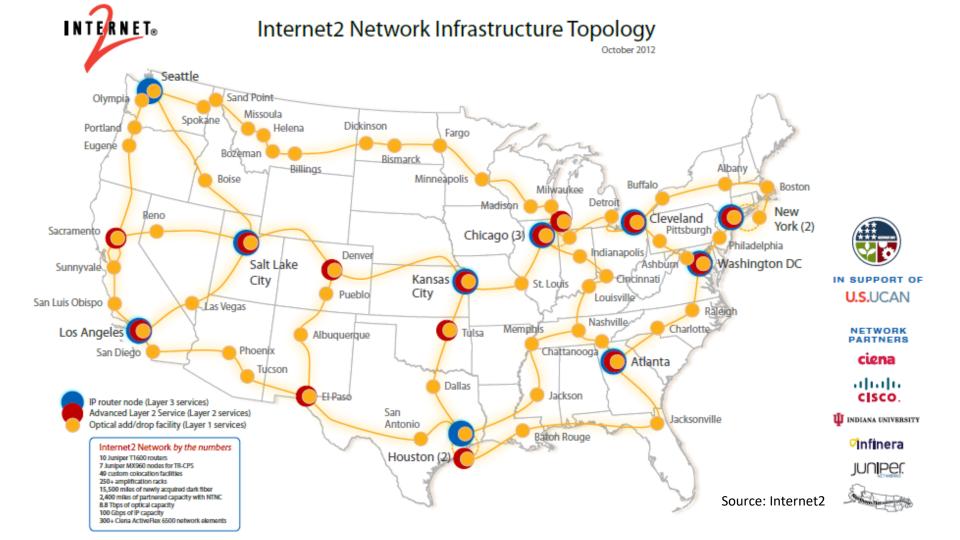
- Full-duplex
 - Bidirectional
- Half-duplex
 - Bidirectional
- <u>Simplex</u>
 - unidirectional

Wireless Links


- Message is <u>broadcast</u>
 - Received by all nodes in range
 - Not a good fit with our model

Wireless Links (2)


- Often show logical links
 - Not all possible connectivity



A Small Network

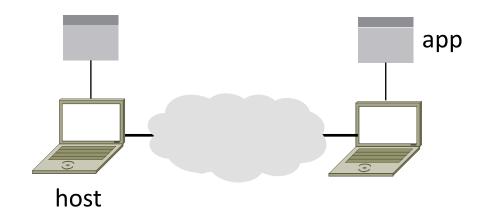
Connect a couple of computers

Next, a large network ...

Example Networks (2)

- WiFi (802.11)
- Enterprise / Ethernet
- ISP (Internet Service Provider)
- Cable / DSL
- Mobile phone / cellular (2G, 3G, 4G)
- Bluetooth
- Telephone
- Satellite ...

Network names by scale

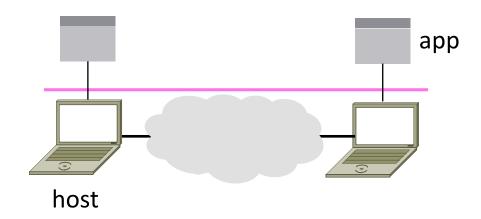

Scale	Туре	Example
Vicinity	PAN (Personal Area Network)	Bluetooth (e.g., headset)
Building	LAN (Local Area Network)	WiFi, Ethernet
City	MAN (Metropolitan Area Network)	Cable, DSL
Country	WAN (Wide Area Network)	Large ISP
Planet	The Internet (network of all networks)	The Internet!

Internetworks

- An <u>internetwork</u>, or <u>internet</u>, is what you get when you join networks together
 - Just another network
- The Internet (capital "I") is the internet we all use

Key Interfaces

- Between (1) apps and network,
 and (2) network components
 - More formal treatment later on

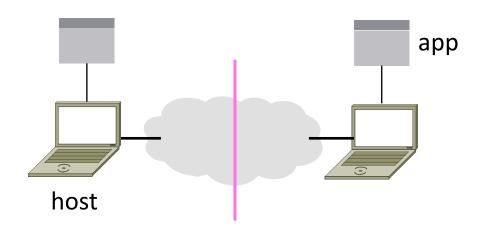


Computer Networks

34

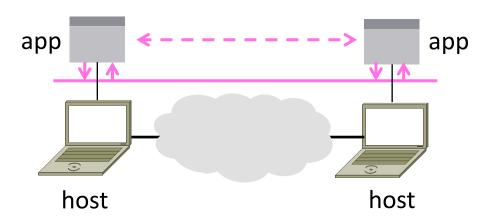
Key Interfaces (2)

- Network-application interfaces define how apps use the network
 - Sockets are widely used in practice

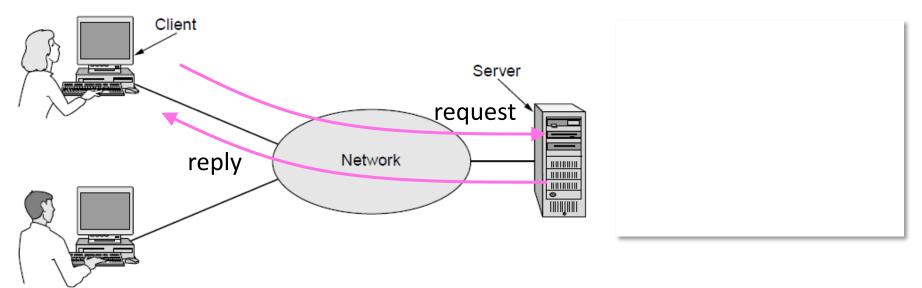


Computer Networks

35


Key Interfaces (3)

- Network-network interfaces define how nodes work together
 - Traceroute can peek in the network

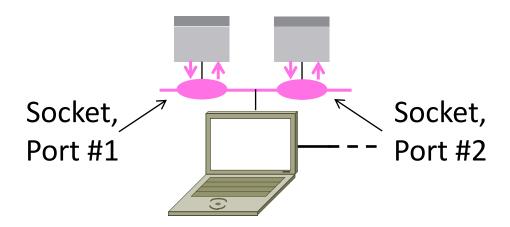

Network-Application Interface

- Defines how apps use the network
 - Lets apps talk to each other via hosts;
 hides the details of the network

Motivating Application

Simple client-server setup

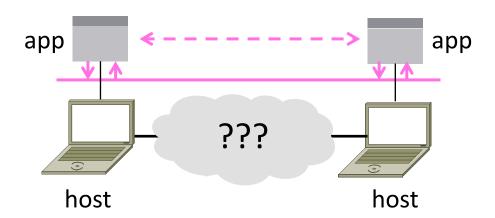
Motivating Application (2)


- Simple client-server setup
 - Client app sends a request to server app
 - Server app returns a (longer) reply
- This is the basis for many apps!
 - File transfer: send name, get file (§6.1.4)
 - Web browsing: send URL, get page
 - Echo: send message, get it back
- Let's see how to write this app ...


Socket API

- Simple abstraction to use the network
 - The network service API used to write all Internet applications
 - Part of all major OSes and languages;
 originally Berkeley (Unix) ~1983
- Supports two kinds of network services
 - Streams: reliably send a stream of bytes »
 - Datagrams: unreliably send separate messages. (Ignore for now.)

Socket API (2)

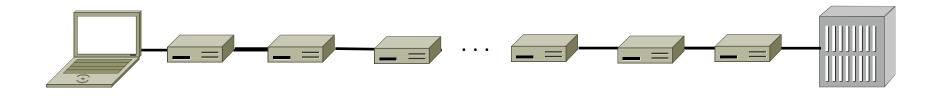

 Sockets let apps attach to the local network at different ports

Network Service API Hides Details

- Apps talk to other apps with no real idea of what is inside the network
 - This is good! But you may be curious ...

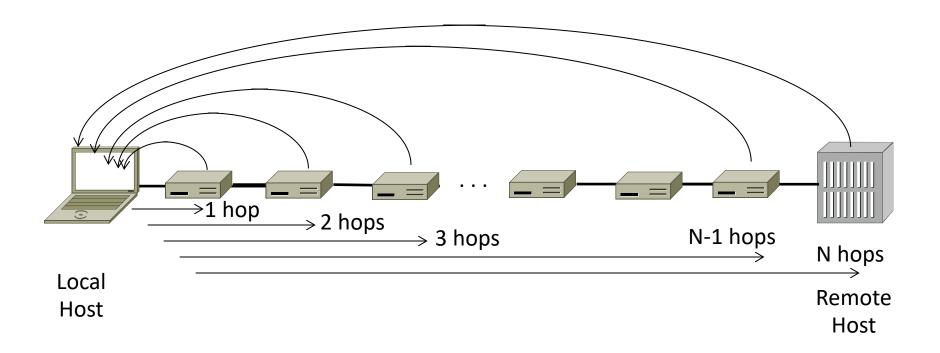
Traceroute

- Widely used command-line tool to let hosts peek inside the network
 - On all OSes (tracert on Windows)
 - Developed by Van Jacobson ~1987
 - Uses a network-network interface
 (IP) in ways we will explain later


Van Jacobson

: Credit: Wikipedia (public domain)

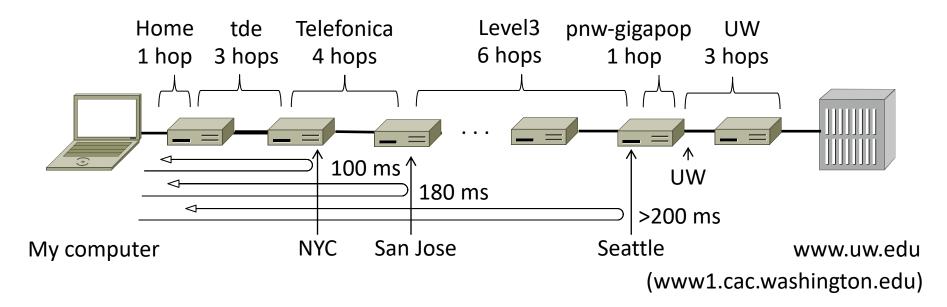
Traceroute (2)


Probes successive hops to find network path

Local Host

Remote Host

Traceroute (3)



Using Traceroute

```
Administrator: Command Prompt
                                                                                             _ <u>-</u>
C:\Users\d.jw>tracert www.uw.edu
Tracing route to www.washington.edu [128.95.155.134]
over a maximum of 30 hops:
                <1 ms
                                192.168.1.1
  2
3
4
5
        8 ms
                               88.Red-80-58-67.staticIP.rima-tde.net [80.58.67.88]
                   ms
                 5 ms
                               169.Red-80-58-78.staticIP.rima-tde.net [80.58.78.169]
       16 ms
       12 ms
                12 ms
                         13 ms
                               217.Red-80-58-87.staticIP.rima-tde.net [80.58.87.217]
        5 ms
                                et-1-0-0-1-101-GRTBCNES1.red.telefonica-wholesale.net [94.142.103.20
       40 ms
                38 ms
                         38 ms
                                176.52.250.226
 7
8
9
      108 ms
               106 ms
                        136 ms
                               xe-6-0-2-0-grtnycpt2.red.telefonica-wholesale.net [213.140.43.9]
      180 ms
               179
                        182 ms
                               Xe9-2-0-0-grtpaopx2.red.telefonica-wholesale.net [94.142.118.178]
                               te-4-2.car1.SanJose2.Level3.net [4.59.0.225]
      178 ms
               175 ms
                        176 ms
      190 ms
               186 ms
                        187 ms
                                vlan80.csw3.SanJose1.Level3.net [4.69.152.190]
 11
      185 ms
               185 ms
                                ae-82-82.ebr2.SanJose1.Level3.net [4.69.153.25]
 12
      268 ms
               205 ms
                        207 ms ae-7-7.ebr1.Seattle1.Level3.net [4.69.132.50]
 13
      334 ms
               202 ms
                        195 ms
                                ae-12-51.car2.Seattle1.Level3.net [4.69.147.132]
 14
      195 ms
               196 ms
                                PACIFIC-NOR.car2.Seattle1.Level3.net [4.53.146.142]
                        195 ms
 15
      197 ms
               195 ms
                                ae0--4000.iccr-sttlwa01-02.infra.pnw-gigapop.net [209.124.188.132]
                        196 ms
 16
                                v14000.uwbr-ads-01.infra.washington.edu [209.124.188.133]
      196 ms
               196 ms
                        195 ms
 17
                                Request timed out.
 18
      201 ms
               194 ms
                        196 ms
                                ae4--583.uwar-ads-1.infra.washington.edu [128.95.155.131]
 19
      197 ms
               196 ms
                        195 ms
                                www1.cac.washington.edu [128.95.155.134]
Trace complete.
```

Using Traceroute (2)

ISP names and places are educated guesses

