Topic

- Some bits may be received in error due to noise. How do we detect this?
 - Parity »
 - Checksums »
 - CRCs »
- Detection will let us fix the error, for example, by retransmission (later).

Simple Error Detection – Parity Bit

- Take D data bits, add 1 check bit that is the sum of the D bits
 - Sum is modulo 2 or XOR

Parity Bit (2)

- How well does parity work?
 - What is the distance of the code?

– How many errors will it detect/correct?

• What about larger errors?

Checksums

- Idea: sum up data in N-bit words
 - Widely used in, e.g., TCP/IP/UDP

1500 bytes	16 bits
------------	---------

• Stronger protection than parity

Internet Checksum

- Sum is defined in 1s complement arithmetic (must add back carries)
 - And it's the negative sum
- "The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words ..." RFC 791

Internet Checksum (2)

Sending:

- 1. Arrange data in 16-bit words
- 2. Put zero in checksum position, add
- 3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

0001 f203 f4f5 f6f7

Internet Checksum (3)

Sending:

Arrange data in 16-bit words
 Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

0001 f203 f4f5 f6f7 +(0000)
2ddf0
ddf0 + 2
ddf2
220d

Internet Checksum (4)

Receiving:

Arrange data in 16-bit words
 Checksum will be non-zero, add

0001 f203 f4f5 f6f7 + 220d

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

Internet Checksum (5)

Receiving:

Arrange data in 16-bit words
 Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

l	(5)
	0001 f203 f4f5 f6f7 + 220d
	2fffd
	fffd + 2
	0000

Internet Checksum (6)

- How well does the checksum work?
 - What is the distance of the code?
 - How many errors will it detect/correct?

• What about larger errors?

Cyclic Redundancy Check (CRC)

- Even stronger protection
 - Given n data bits, generate k check
 bits such that the n+k bits are evenly
 divisible by a generator C
- Example with numbers:
 - n = 302, k = one digit, C = 3

CRCs (2)

- The catch:
 - It's based on mathematics of finite fields, in which "numbers" represent polynomials

- What this means:
 - We work with binary values and operate using modulo 2 arithmetic

CRCs (3)

- Send Procedure:
- 1. Extend the n data bits with k zeros
- 2. Divide by the generator value C
- 3. Keep remainder, ignore quotient
- 4. Adjust k check bits by remainder
- Receive Procedure:
- 1. Divide and check for zero remainder

CRCs (4)

Check bits: $C(x)=x^{4}+x^{1}+1$ C = 10011k = 4

CRCs (6)

- Protection depend on generator
 - Standard CRC-32 is 10000010
 01100000 10001110 110110111
- Properties:
 - HD=4, detects up to triple bit errors
 - Also odd number of errors
 - And bursts of up to k bits in error
 - Not vulnerable to systematic errors like checksums

Error Detection in Practice

- CRCs are widely used on links
 - Ethernet, 802.11, ADSL, Cable ...
- Checksum used in Internet
 - IP, TCP, UDP ... but it is weak
- Parity
 - Is little used

Topic

- Some bits may be received in error due to noise. How do we fix them?
 - Hamming code »
 - Other codes »
- And why should we use detection when we can use correction?

Why Error Correction is Hard

- If we had reliable check bits we could use them to narrow down the position of the error
 - Then correction would be easy
- But error could be in the check bits as well as the data bits!
 - Data might even be correct

Intuition for Error Correcting Code

- Suppose we construct a code with a Hamming distance of at least 3
 - Need ≥3 bit errors to change one valid codeword into another
 - Single bit errors will be closest to a unique valid codeword
- If we assume errors are only 1 bit, we can correct them by mapping an error to the closest valid codeword
 - Works for d errors if $HD \ge 2d + 1$

Intuition (2)

• Visualization of code:

Intuition (3)

• Visualization of code:

Hamming Code

- Gives a method for constructing a code with a distance of 3
 - Uses $n = 2^{k} k 1$, e.g., n=4, k=3
 - Put check bits in positions p that are powers of 2, starting with position 1
 - Check bit in position p is parity of positions with a p term in their values
- Plus an easy way to correct [soon]

Hamming Code (2)

- Example: data=0101, 3 check bits
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7
 - Check 2 covers positions 2, 3, 6, 7
 - Check 4 covers positions 4, 5, 6, 7

1 2 3 4 5 6 7

Hamming Code (3)

- Example: data=0101, 3 check bits
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7
 - Check 2 covers positions 2, 3, 6, 7
 - Check 4 covers positions 4, 5, 6, 7

Hamming Code (4)

- To decode:
 - Recompute check bits (with parity sum including the check bit)
 - Arrange as a binary number
 - Value (syndrome) tells error position
 - Value of zero means no error
 - Otherwise, flip bit to correct

Hamming Code (5)

• Example, continued

$$\longrightarrow \underbrace{0}_{1} \underbrace{1}_{2} \underbrace{0}_{3} \underbrace{0}_{4} \underbrace{1}_{5} \underbrace{0}_{6} \underbrace{1}_{7}$$

p₄=

Syndrome = Data =

Hamming Code (6)

• Example, continued

$$\longrightarrow \underbrace{0}_{1} \underbrace{1}_{2} \underbrace{0}_{3} \underbrace{0}_{4} \underbrace{1}_{5} \underbrace{0}_{6} \underbrace{1}_{7}$$

$$p_1 = 0 + 0 + 1 + 1 = 0$$
, $p_2 = 1 + 0 + 0 + 1 = 0$,
 $p_4 = 0 + 1 + 0 + 1 = 0$

Syndrome = 000, no error Data = 0 1 0 1

Hamming Code (7)

• Example, continued

$$\longrightarrow \underbrace{0}_{1} \underbrace{1}_{2} \underbrace{0}_{3} \underbrace{0}_{4} \underbrace{1}_{5} \underbrace{1}_{6} \underbrace{1}_{7}$$

p₄=

Syndrome = Data =

Hamming Code (8)

• Example, continued

 $\longrightarrow \underbrace{0}_{1} \underbrace{1}_{2} \underbrace{0}_{3} \underbrace{0}_{4} \underbrace{1}_{5} \underbrace{1}_{6} \underbrace{1}_{7} \underbrace{1}_{7$

$$p_1 = 0 + 0 + 1 + 1 = 0, p_2 = 1 + 0 + 1 + 1 = 1,$$

 $p_4 = 0 + 1 + 1 + 1 = 1$

Syndrome = 1 1 0, flip position 6 Data = 0 1 0 1 (correct after flip!)

Other Error Correction Codes

- Codes used in practice are much more involved than Hamming
- Convolutional codes (§3.2.3)
 - Take a stream of data and output a mix of the recent input bits
 - Makes each output bit less fragile
 - Decode using Viterbi algorithm (which can use bit confidence values)

Other Codes (2) – LDPC

- Low Density Parity Check (§3.2.3)
 - LDPC based on sparse matrices
 - Decoded iteratively using a belief propagation algorithm
 - State of the art today
- Invented by Robert Gallager in 1963 as part of his PhD thesis
 - Promptly forgotten until 1996 ...

Source: IEEE GHN, © 2009 IEEE

Detection vs. Correction

- Which is better will depend on the pattern of errors. For example:
 - 1000 bit messages with a <u>bit error rate</u> (<u>BER</u>) of 1 in 10000
- Which has less overhead?

Detection vs. Correction

- Which is better will depend on the pattern of errors. For example:
 - 1000 bit messages with a <u>bit error rate</u> (<u>BER</u>) of 1 in 10000
- Which has less overhead?
 - It still depends! We need to know more about the errors

Detection vs. Correction (2)

- 1. Assume bit errors are random
 - Messages have 0 or maybe 1 error
- Error correction:
 - Need ~10 check bits per message
 - Overhead:
- Error detection:
 - Need ~1 check bits per message plus 1000 bit retransmission 1/10 of the time
 - Overhead:

Detection vs. Correction (3)

- 2. Assume errors come in bursts of 100
 - Only 1 or 2 messages in 1000 have errors
- Error correction:
 - Need >>100 check bits per message
 - Overhead:
- Error detection:
 - Need 32? check bits per message plus 1000 bit resend 2/1000 of the time
 - Overhead:

Detection vs. Correction (4)

- Error correction:
 - Needed when errors are expected
 - Or when no time for retransmission
- Error detection:
 - More efficient when errors are not expected
 - And when errors are large when they do occur

Error Correction in Practice

- Heavily used in physical layer
 - LDPC is the future, used for demanding links like 802.11, DVB, WiMAX, LTE, power-line, ...
 - Convolutional codes widely used in practice
- Error detection (w/ retransmission) is used in the link layer and above for residual errors
- Correction also used in the application layer
 - Called Forward Error Correction (FEC)
 - Normally with an erasure error model
 - E.g., Reed-Solomon (CDs, DVDs, etc.)