Topic

* Some bits may be received in error
due to noise. How do we detect this?

— Parity »
— Checksums »
— CRGCs »

* Detection will let us fix the error, for
example, by retransmission (later).

CSE 461 University of Washington



Simple Error Detection — Parity Bit

* Take D data bits, add 1 check bit
that is the sum of the D bits
— Sum is modulo 2 or XOR

CSE 461 University of Washington



Parity Bit (2)

* How well does parity work?
— What is the distance of the code?

— How many errors will it detect/correct?

 What about larger errors?

CSE 461 University of Washington



Checksums

* |dea: sum up data in N-bit words
— Widely used in, e.g., TCP/IP/UDP

1500 bytes 16 bits

e Stronger protection than parity

CSE 461 University of Washington



Internet Checksum

* Sum is defined in 1s complement
arithmetic (must add back carries)
— And it’s the negative sum

* “The checksum field is the 16 bit one's

complement of the one's complement
sum of all 16 bit words ...” — RFC 791

CSE 461 University of Washington



Internet Checksum (2)

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

CSE 461 University of Washington

0001
£203
f4£f5
f6£7



Internet Checksum (3)

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

CSE 461 University of Washington

0001
£203
f4£f5
f6£7
+(0000)



Internet Checksum (4)

L 0001
Recelving: £203
1.Arrange data in 16-bit words 246?;’

+ 220d

2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check it is O

CSE 461 University of Washington



Internet Checksum (5)

T 0001
Recelving: £203

£4£f5
f6£7
+ 220d

1.Arrange data in 16-bit words
2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check it is O 00%0

CSE 461 University of Washington



Internet Checksum (6)

e How well does the checksum work?

— What is the distance of the code?
— How many errors will it detect/correct?

 What about larger errors?

CSE 461 University of Washington

10



Cyclic Redundancy Check (CRC)

* Even stronger protection

— Given n data bits, generate k check
bits such that the n+k bits are evenly
divisible by a generator C

* Example with numbers:
— n=302, k=one digit, C=3

CSE 461 University of Washington

11



CRCs (2)

* The catch:

— It’s based on mathematics of finite
fields, in which “numbers”
represent polynomials

— e.g, 10011010 is x” +x* +x3 + x!

* What this means:

— We work with binary values and
operate using modulo 2 arithmetic



CRCs (3)

* Send Procedure:

Extend the n data bits with k zeros
Divide by the generator value C
Keep remainder, ignore quotient
Adjust k check bits by remainder

> w N e

e Receive Procedure:
1. Divide and check for zero remainder



Data bits:
1101011111

Check bits:
C(x)=x*+x1+1
C=10011
k=4

CSE 461 University of Washington

CRCs (4)

100111101011111

14



CRCs (5)

1 0 =— Quotient (thrown away)

11 0 00O 1

170 0 0 0 =— Frame with four zeros appended

— =~ 0 OC O0C OO0 O
O (0 Q00|00

— |0 OO0 OO0 O

O 0000 O

— Q|

Ll

e

-

o
o

1 0 =— Remainder

—|— —O0O00O
il [=E=][=)=]{e=]
O~ O|— «—
Ol =

-—

1 0 0 1 0 =— Frame with four zeros appended

1 1

11

10 10

Transmitted frame:

minus remainder

15

CSE 461 University of Washington



CRCs (6)

* Protection depend on generator

— Standard CRC-32 is 10000010
01100000 10001110 110110111

* Properties:
— HD=4, detects up to triple bit errors
— Also odd number of errors
— And bursts of up to k bits in error

— Not vulnerable to systematic errors
like checksums



Error Detection in Practice

* CRCs are widely used on links
— Ethernet, 802.11, ADSL, Cable ...

e Checksum used in Internet
— |P, TCP, UDP ... but it is weak

* Parity
— |s little used

CSE 461 University of Washington

17



Topic

* Some bits may be received in error
due to noise. How do we fix them?

— Hamming code »

— Other codes »

* And why should we use detection
when we can use correction?



Why Error Correction is Hard

* |f we had reliable check bits we
could use them to narrow down
the position of the error

— Then correction would be easy

e But error could be in the check
bits as well as the data bits!

— Data might even be correct

CSE 461 University of Washington

19



Intuition for Error Correcting Code

* Suppose we construct a code with a
Hamming distance of at least 3

— Need >3 bit errors to change one
valid codeword into another

— Single bit errors will be closest to a
unique valid codeword

* If we assume errors are only 1 bit,
we can correct them by mapping an
error to the closest valid codeword

— Works ford errorsif HD >22d + 1

CSE 461 University of Washington

20



Intuition (2)

e Visualization of code:

OOOOOO valid
O . O Q . Qcodeword

OO0000

000000,
O® OO @O wivwor

C University of Washington



Intuition (3)

* Visualization of code:

O OO0 OO valid
Singl
oiterror0 @ OO @0

from A @ @QQO

threebit_ PO OO O
errrc()eres ti) O O ‘ nggxgrd

" 000000

CSE 461 University of Washington

22



Hamming Code

* Gives a method for constructing a
code with a distance of 3
— Uses n = 2K k- 1, e.g., n=4, k=3

— Put check bits in positions p that are
powers of 2, starting with position 1

— Check bit in position p is parity of
positions with a p term in their values

* Plus an easy way to correct [soon]

CSE 461 University of Washington

23



Hamming Code (2)

* Example: data=0101, 3 check bits

— 7 bit code, check bit positions 1, 2, 4
— Check 1 covers positions 1, 3, 5, 7
— Check 2 covers positions 2, 3, 6, 7
— Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington

24



Hamming Code (3)

* Example: data=0101, 3 check bits

— 7 bit code, check bit positions 1, 2, 4
— Check 1 covers positions 1, 3, 5, 7
— Check 2 covers positions 2, 3, 6, 7
— Check 4 covers positions 4, 5, 6, 7

0100101 —

4= 0+1+1=0, p,= 0+0+1=1, p,y= 1+0+1=0

CSE 461 University of Washington

25



Hamming Code (4)

* To decode:

— Recompute check bits (with parity
sum including the check bit)

— Arrange as a binary number
— Value (syndrome) tells error position
— Value of zero means no error

— Otherwise, flip bit to correct

CSE 461 University of Washington

26



Hamming Code (5)
* Example, continued
— 0100101

P1= Py=
Pg=

Syndrome =
Data =

CSE 461 University of Washington

27



Hamming Code (6)
* Example, continued

— 0100101

p1=0+0+1+1=0, py,=1+0+0+1=0,
py=0+1+0+1=0

Syndrome = 000, no error
Data=0101

CSE 461 University of Washington

28



Hamming Code (7)
* Example, continued
— 0100111

P1= Py=
Pg=

Syndrome =
Data =

CSE 461 University of Washington

29



Hamming Code (8)
* Example, continued

— 0100111

p1=0+0+1+1=0, py,=1+0+1+1=1,
pp=0+1+1+1 =1

Syndrome =1 10, flip position 6
Data=01 01 (correct after flip!)

CSE 461 University of Washington

30



Other Error Correction Codes

* Codes used in practice are much
more involved than Hamming

* Convolutional codes (§3.2.3)

— Take a stream of data and output a
mix of the recent input bits

— Makes each output bit less fragile

— Decode using Viterbi algorithm
(which can use bit confidence values)

CSE 461 University of Washington

31



Other Codes (2) — LDPC

* Low Density Parity Check (§3.2.3)

— LDPC based on sparse matrices

— Decoded iteratively using a belief
propagation algorithm

— State of the art today

* |Invented by Robert Gallager in
1963 as part of his PhD thesis

— Promptly forgotten until 1996 ...

Source: IEEE GHN, © 2009 IEEE

CSE 461 University of Washington

32



Detection vs. Correction

* Which is better will depend on the
pattern of errors. For example:

— 1000 bit messages with a bit error rate
(BER) of 1 in 10000

* Which has less overhead?

CSE 461 University of Washington

33



Detection vs. Correction

* Which is better will depend on the
pattern of errors. For example:

— 1000 bit messages with a bit error rate
(BER) of 1 in 10000

* Which has less overhead?

— |t still depends! We need to know
more about the errors

CSE 461 University of Washington

34



Detection vs. Correction (2)

1. Assume bit errors are random
— Messages have 0 or maybe 1 error

* Error correction:
— Need ~10 check bits per message
— QOverhead:

 Error detection:

— Need ~1 check bits per message plus 1000 bit
retransmission 1/10 of the time

— Qverhead:

CSE 461 University of Washington

35



Detection vs. Correction (3)

2. Assume errors come in bursts of 100
— Only 1 or 2 messages in 1000 have errors

* Error correction:
— Need >>100 check bits per message
— QOverhead:

 Error detection:

— Need 327 check bits per message plus 1000
bit resend 2/1000 of the time

— Qverhead:

CSE 461 University of Washington

36



Detection vs. Correction (4)

* Error correction:
— Needed when errors are expected
— Or when no time for retransmission

 Error detection:

— More efficient when errors are not
expected

— And when errors are large when
they do occur

CSE 461 University of Washington

37



Error Correction in Practice

* Heavily used in physical layer
— LDPC is the future, used for demanding links
like 802.11, DVB, WiMAX, LTE, power-line, ...

— Convolutional codes widely used in practice

* Error detection (w/ retransmission) is used in
the link layer and above for residual errors

e Correction also used in the application layer
— Called Forward Error Correction (FEC)
— Normally with an erasure error model
— E.g., Reed-Solomon (CDs, DVDs, etc.)

CSE 461 University of Washington

38



