
CSE 461 University of Washington 1

Topic
• Some bits may be received in error

due to noise. How do we detect this?
– Parity »
– Checksums »
– CRCs »

• Detection will let us fix the error, for
example, by retransmission (later).

CSE 461 University of Washington 2

Simple Error Detection – Parity Bit
• Take D data bits, add 1 check bit

that is the sum of the D bits
– Sum is modulo 2 or XOR

CSE 461 University of Washington 3

Parity Bit (2)
• How well does parity work?
– What is the distance of the code?

– How many errors will it detect/correct?

• What about larger errors?

CSE 461 University of Washington 4

Checksums
• Idea: sum up data in N-bit words
– Widely used in, e.g., TCP/IP/UDP

• Stronger protection than parity

1500 bytes 16 bits

CSE 461 University of Washington 5

Internet Checksum
• Sum is defined in 1s complement

arithmetic (must add back carries)
– And it’s the negative sum

• “The checksum field is the 16 bit one's
complement of the one's complement
sum of all 16 bit words …” – RFC 791

CSE 461 University of Washington 6

Internet Checksum (2)
Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

0001
f203
f4f5
f6f7

+(0000)

2ddf0

ddf0
+ 2

ddf2

220d

CSE 461 University of Washington 7

Internet Checksum (3)
Sending:

1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

0001
f203
f4f5
f6f7

+(0000)

2ddf0

ddf0
+ 2

ddf2

220d

CSE 461 University of Washington 8

Internet Checksum (4)
Receiving:

1.Arrange data in 16-bit words
2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check it is 0

0001
f203
f4f5
f6f7

+ 220d

2fffd

fffd
+ 2

ffff

0000

CSE 461 University of Washington 9

Internet Checksum (5)
Receiving:

1.Arrange data in 16-bit words
2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check it is 0

0001
f203
f4f5
f6f7

+ 220d

2fffd

fffd
+ 2

ffff

0000

CSE 461 University of Washington 10

Internet Checksum (6)
• How well does the checksum work?
– What is the distance of the code?
– How many errors will it detect/correct?

• What about larger errors?

CSE 461 University of Washington 11

Cyclic Redundancy Check (CRC)
• Even stronger protection
– Given n data bits, generate k check

bits such that the n+k bits are evenly
divisible by a generator C

• Example with numbers:
– n = 302, k = one digit, C = 3

CSE 461 University of Washington 12

CRCs (2)
• The catch:
– It’s based on mathematics of finite

fields, in which “numbers”
represent polynomials

– e.g, 10011010 is x7 + x4 + x3 + x1

• What this means:
– We work with binary values and

operate using modulo 2 arithmetic

CSE 461 University of Washington 13

CRCs (3)
• Send Procedure:
1. Extend the n data bits with k zeros
2. Divide by the generator value C
3. Keep remainder, ignore quotient
4. Adjust k check bits by remainder

• Receive Procedure:
1. Divide and check for zero remainder

CRCs (4)

CSE 461 University of Washington 14

Data bits:
1101011111

Check bits:
C(x)=x4+x1+1

C = 10011
k = 4

1 0 0 1 1 1 1 0 1 0 1 1 1 1 1

CRCs (5)

CSE 461 University of Washington 15

CSE 461 University of Washington 16

CRCs (6)
• Protection depend on generator
– Standard CRC-32 is 10000010

01100000 10001110 110110111

• Properties:
– HD=4, detects up to triple bit errors
– Also odd number of errors
– And bursts of up to k bits in error
– Not vulnerable to systematic errors

like checksums

CSE 461 University of Washington 17

Error Detection in Practice
• CRCs are widely used on links
– Ethernet, 802.11, ADSL, Cable …

• Checksum used in Internet
– IP, TCP, UDP … but it is weak

• Parity
– Is little used

CSE 461 University of Washington 18

Topic
• Some bits may be received in error

due to noise. How do we fix them?
– Hamming code »
– Other codes »

• And why should we use detection
when we can use correction?

CSE 461 University of Washington 19

Why Error Correction is Hard
• If we had reliable check bits we

could use them to narrow down
the position of the error
– Then correction would be easy

• But error could be in the check
bits as well as the data bits!
– Data might even be correct

CSE 461 University of Washington 20

Intuition for Error Correcting Code
• Suppose we construct a code with a

Hamming distance of at least 3
– Need ≥3 bit errors to change one

valid codeword into another
– Single bit errors will be closest to a

unique valid codeword

• If we assume errors are only 1 bit,
we can correct them by mapping an
error to the closest valid codeword
– Works for d errors if HD ≥ 2d + 1

CSE 461 University of Washington 21

Intuition (2)
• Visualization of code:

A

B

Valid
codeword

Error
codeword

CSE 461 University of Washington 22

Intuition (3)
• Visualization of code:

A

B

Valid
codeword

Error
codeword

Single
bit error
from A

Three bit
errors to
get to B

CSE 461 University of Washington 23

Hamming Code
• Gives a method for constructing a

code with a distance of 3
– Uses n = 2k – k – 1, e.g., n=4, k=3
– Put check bits in positions p that are

powers of 2, starting with position 1
– Check bit in position p is parity of

positions with a p term in their values
• Plus an easy way to correct [soon]

CSE 461 University of Washington 24

Hamming Code (2)
• Example: data=0101, 3 check bits
– 7 bit code, check bit positions 1, 2, 4
– Check 1 covers positions 1, 3, 5, 7
– Check 2 covers positions 2, 3, 6, 7
– Check 4 covers positions 4, 5, 6, 7

_ _ _ _ _ _ _
1 2 3 4 5 6 7

CSE 461 University of Washington 25

Hamming Code (3)
• Example: data=0101, 3 check bits
– 7 bit code, check bit positions 1, 2, 4
– Check 1 covers positions 1, 3, 5, 7
– Check 2 covers positions 2, 3, 6, 7
– Check 4 covers positions 4, 5, 6, 7

0 1 0 0 1 0 1

p1= 0+1+1 = 0, p2= 0+0+1 = 1, p4= 1+0+1 = 0
1 2 3 4 5 6 7

CSE 461 University of Washington 26

Hamming Code (4)
• To decode:
– Recompute check bits (with parity

sum including the check bit)
– Arrange as a binary number
– Value (syndrome) tells error position
– Value of zero means no error
– Otherwise, flip bit to correct

CSE 461 University of Washington 27

Hamming Code (5)
• Example, continued

0 1 0 0 1 0 1

p1= p2=
p4=

Syndrome =
Data =

1 2 3 4 5 6 7

CSE 461 University of Washington 28

Hamming Code (6)
• Example, continued

0 1 0 0 1 0 1

p1= 0+0+1+1 = 0, p2= 1+0+0+1 = 0,
p4= 0+1+0+1 = 0

Syndrome = 000, no error
Data = 0 1 0 1

1 2 3 4 5 6 7

CSE 461 University of Washington 29

Hamming Code (7)
• Example, continued

0 1 0 0 1 1 1

p1= p2=
p4=

Syndrome =
Data =

1 2 3 4 5 6 7

CSE 461 University of Washington 30

Hamming Code (8)
• Example, continued

0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1,
p4= 0+1+1+1 = 1

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)

1 2 3 4 5 6 7

CSE 461 University of Washington 31

Other Error Correction Codes
• Codes used in practice are much

more involved than Hamming

• Convolutional codes (§3.2.3)
– Take a stream of data and output a

mix of the recent input bits
– Makes each output bit less fragile
– Decode using Viterbi algorithm

(which can use bit confidence values)

CSE 461 University of Washington 32

Other Codes (2) – LDPC
• Low Density Parity Check (§3.2.3)
– LDPC based on sparse matrices
– Decoded iteratively using a belief

propagation algorithm
– State of the art today

• Invented by Robert Gallager in
1963 as part of his PhD thesis
– Promptly forgotten until 1996 …

Source: IEEE GHN, © 2009 IEEE

CSE 461 University of Washington 33

Detection vs. Correction
• Which is better will depend on the

pattern of errors. For example:
– 1000 bit messages with a bit error rate

(BER) of 1 in 10000

• Which has less overhead?

CSE 461 University of Washington 34

Detection vs. Correction
• Which is better will depend on the

pattern of errors. For example:
– 1000 bit messages with a bit error rate

(BER) of 1 in 10000

• Which has less overhead?
– It still depends! We need to know

more about the errors

CSE 461 University of Washington 35

Detection vs. Correction (2)
1. Assume bit errors are random

– Messages have 0 or maybe 1 error

• Error correction:
– Need ~10 check bits per message
– Overhead:

• Error detection:
– Need ~1 check bits per message plus 1000 bit

retransmission 1/10 of the time
– Overhead:

CSE 461 University of Washington 36

Detection vs. Correction (3)
2. Assume errors come in bursts of 100

– Only 1 or 2 messages in 1000 have errors

• Error correction:
– Need >>100 check bits per message
– Overhead:

• Error detection:
– Need 32? check bits per message plus 1000

bit resend 2/1000 of the time
– Overhead:

CSE 461 University of Washington 37

Detection vs. Correction (4)
• Error correction:
– Needed when errors are expected
– Or when no time for retransmission

• Error detection:
– More efficient when errors are not

expected
– And when errors are large when

they do occur

CSE 461 University of Washington 38

Error Correction in Practice
• Heavily used in physical layer

– LDPC is the future, used for demanding links
like 802.11, DVB, WiMAX, LTE, power-line, …

– Convolutional codes widely used in practice

• Error detection (w/ retransmission) is used in
the link layer and above for residual errors

• Correction also used in the application layer
– Called Forward Error Correction (FEC)
– Normally with an erasure error model
– E.g., Reed-Solomon (CDs, DVDs, etc.)

