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Topic
• Some bits may be received in error 

due to noise. How do we detect this?
– Parity »
– Checksums »
– CRCs »

• Detection will let us fix the error, for 
example, by retransmission (later).
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Simple Error Detection – Parity Bit
• Take D data bits, add 1 check bit 

that is the sum of the D bits
– Sum is modulo 2 or XOR
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Parity Bit (2)
• How well does parity work?
– What is the distance of the code?

– How many errors will it detect/correct?

• What about larger errors?
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Checksums
• Idea: sum up data in N-bit words
– Widely used in, e.g., TCP/IP/UDP

• Stronger protection than parity

1500 bytes 16 bits
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Internet Checksum
• Sum is defined in 1s complement 

arithmetic (must add back carries)
– And it’s the negative sum

• “The checksum field is the 16 bit one's 
complement of the one's complement 
sum of all 16 bit words …” – RFC 791
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Internet Checksum (2)
Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

0001 
f203 
f4f5 
f6f7 

+(0000)
------
2ddf0 

ddf0 
+    2 
------
ddf2 

220d 
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Internet Checksum (3)
Sending:

1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

0001 
f203 
f4f5 
f6f7 

+(0000)
------
2ddf0 

ddf0 
+    2 
------
ddf2 

220d 
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Internet Checksum (4)
Receiving:

1.Arrange data in 16-bit words
2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check it is 0

0001 
f203 
f4f5 
f6f7 

+ 220d 
------
2fffd 

fffd
+    2 
------
ffff

0000 
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Internet Checksum (5)
Receiving:

1.Arrange data in 16-bit words
2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check it is 0

0001 
f203 
f4f5 
f6f7 

+ 220d 
------
2fffd 

fffd
+    2 
------
ffff

0000 
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Internet Checksum (6)
• How well does the checksum work?
– What is the distance of the code?
– How many errors will it detect/correct?

• What about larger errors?
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Cyclic Redundancy Check (CRC)
• Even stronger protection
– Given n data bits, generate k check 

bits such that the n+k bits are evenly 
divisible by a generator C 

• Example with numbers:
– n = 302, k = one digit, C = 3
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CRCs (2)
• The catch:
– It’s based on mathematics of finite 

fields, in which “numbers” 
represent polynomials

– e.g, 10011010 is x7 + x4 + x3 + x1

• What this means:
– We work with binary values and 

operate using modulo 2 arithmetic
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CRCs (3)
• Send Procedure:
1. Extend the n data bits with k zeros
2. Divide by the generator value C
3. Keep remainder, ignore quotient
4. Adjust k check bits by remainder

• Receive Procedure:
1. Divide and check for zero remainder



CRCs (4)
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Data bits:
1101011111

Check bits:
C(x)=x4+x1+1

C = 10011
k = 4 

1 0 0 1 1 1  1 0  1  0  1 1  1  1  1 



CRCs (5)
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CRCs (6)
• Protection depend on generator
– Standard CRC-32 is 10000010 

01100000 10001110 110110111

• Properties:
– HD=4, detects up to triple bit errors
– Also odd number of errors 
– And bursts of up to k bits in error
– Not vulnerable to systematic errors 

like checksums
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Error Detection in Practice
• CRCs are widely used on links
– Ethernet, 802.11, ADSL, Cable …

• Checksum used in Internet 
– IP, TCP, UDP … but it is weak

• Parity
– Is little used
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Topic
• Some bits may be received in error 

due to noise. How do we fix them?
– Hamming code »
– Other codes »

• And why should we use detection 
when we can use correction?



CSE 461 University of Washington 19

Why Error Correction is Hard
• If we had reliable check bits we 

could use them to narrow down  
the position of the error
– Then correction would be easy

• But error could be in the check   
bits as well as the data bits!
– Data might even be correct 
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Intuition for Error Correcting Code
• Suppose we construct a code with a 

Hamming distance of at least 3
– Need ≥3 bit errors to change one         

valid codeword into another
– Single bit errors will be closest to a  

unique valid codeword

• If we assume errors are only 1 bit,    
we can correct them by mapping an 
error to the closest valid codeword
– Works for d errors if HD ≥ 2d + 1
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Intuition (2)
• Visualization of code:

A

B

Valid
codeword

Error
codeword
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Intuition (3)
• Visualization of code:

A

B

Valid
codeword

Error
codeword

Single 
bit error
from A

Three bit 
errors to 
get to B
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Hamming Code
• Gives a method for constructing a 

code with a distance of 3
– Uses n = 2k – k – 1, e.g., n=4, k=3
– Put check bits in positions p that are 

powers of 2, starting with position 1
– Check bit in position p is parity of 

positions with a p term in their values
• Plus an easy way  to correct [soon]
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Hamming Code (2)
• Example: data=0101, 3 check bits
– 7 bit code, check bit positions 1, 2, 4
– Check 1 covers positions 1, 3, 5, 7
– Check 2 covers positions 2, 3, 6, 7
– Check 4 covers positions 4, 5, 6, 7

_ _ _  _ _  _ _
1   2   3   4   5   6   7
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Hamming Code (3)
• Example: data=0101, 3 check bits
– 7 bit code, check bit positions 1, 2, 4
– Check 1 covers positions 1, 3, 5, 7
– Check 2 covers positions 2, 3, 6, 7
– Check 4 covers positions 4, 5, 6, 7

0 1 0  0 1  0  1

p1= 0+1+1 = 0,  p2= 0+0+1 = 1,  p4= 1+0+1 = 0
1   2   3   4   5   6   7
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Hamming Code (4)
• To decode:
– Recompute check bits (with parity 

sum including the check bit)
– Arrange as a binary number
– Value (syndrome) tells error position
– Value of zero means no error
– Otherwise, flip bit to correct
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Hamming Code (5)
• Example, continued

0 1 0  0 1  0  1

p1=                             p2= 
p4=  

Syndrome =  
Data =

1   2   3   4   5   6   7
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Hamming Code (6)
• Example, continued

0 1 0  0 1  0  1

p1= 0+0+1+1 = 0,   p2= 1+0+0+1 = 0,
p4= 0+1+0+1 = 0

Syndrome = 000, no error
Data = 0 1 0 1

1   2   3   4   5   6   7
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Hamming Code (7)
• Example, continued

0 1 0  0 1  1 1

p1=                             p2= 
p4=  

Syndrome =  
Data =

1   2   3   4   5   6   7
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Hamming Code (8)
• Example, continued

0 1 0  0 1  1 1

p1= 0+0+1+1 = 0,   p2= 1+0+1+1 = 1,
p4= 0+1+1+1 = 1

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)

1   2   3   4   5   6   7
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Other Error Correction Codes
• Codes used in practice are much 

more involved than Hamming

• Convolutional codes (§3.2.3)
– Take a stream of data and output a 

mix of the recent input bits
– Makes each output bit less fragile
– Decode using Viterbi algorithm  

(which can use bit confidence values)
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Other Codes (2) – LDPC 
• Low Density Parity Check (§3.2.3)
– LDPC based on sparse matrices
– Decoded iteratively using a belief 

propagation algorithm
– State of the art today

• Invented by Robert Gallager in  
1963 as part of his PhD thesis
– Promptly forgotten until 1996 … 

Source: IEEE GHN, © 2009 IEEE
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Detection vs. Correction
• Which is better will depend on the 

pattern of errors. For example:
– 1000 bit messages with a bit error rate

(BER) of 1 in 10000

• Which has less overhead?
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Detection vs. Correction
• Which is better will depend on the 

pattern of errors. For example:
– 1000 bit messages with a bit error rate

(BER) of 1 in 10000

• Which has less overhead?
– It still depends! We need to know 

more about the errors
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Detection vs. Correction (2)
1. Assume bit errors are random

– Messages have 0 or maybe 1 error

• Error correction: 
– Need ~10 check bits per message
– Overhead:

• Error detection: 
– Need ~1 check bits per message plus 1000 bit 

retransmission 1/10 of the time
– Overhead:
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Detection vs. Correction (3)
2. Assume errors come in bursts of 100

– Only 1 or 2 messages in 1000 have errors

• Error correction: 
– Need >>100 check bits per message
– Overhead:

• Error detection: 
– Need 32? check bits per message plus 1000 

bit resend 2/1000 of the time
– Overhead:
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Detection vs. Correction (4)
• Error correction: 
– Needed when errors are expected
– Or when no time for retransmission

• Error detection: 
– More efficient when errors are not 

expected
– And when errors are large when 

they do occur
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Error Correction in Practice
• Heavily used in physical layer

– LDPC is the future, used for demanding links 
like 802.11, DVB, WiMAX, LTE, power-line, …

– Convolutional codes widely used in practice

• Error detection (w/ retransmission) is used in 
the link layer and above for residual errors

• Correction also used in the application layer
– Called Forward Error Correction (FEC)
– Normally with an erasure error model
– E.g., Reed-Solomon (CDs, DVDs, etc.)


