
CSE 461 University of Washington 1

Topic
• IP version 6, the future of IPv4 that

is now (still) being deployed

Why do I want IPv6 again?

CSE 461 University of Washington 2

• At least a billion
Internet hosts and
growing …

• And we’re using
32-bit addresses!

Internet Growth

The End of New IPv4 Addresses
• Now running on leftover blocks held by the regional

registries; much tighter allocation policies

CSE 461 University of Washington 3

IANA
(All IPs)

ARIN
(US, Canada)

APNIC
(Asia Pacific)

RIPE
(Europe)
LACNIC

(Latin Amer.)
AfriNIC
(Africa)

ISPs

Companies

Exhausted
on 2/11! End of the world ? 12/21/12?

Exhausted
on 4/11

and 9/12!

CSE 461 University of Washington 4

IP Version 6 to the Rescue
• Effort started by the IETF in 1994

– Much larger addresses (128 bits)
– Many sundry improvements

• Became an IETF standard in 1998
– Nothing much happened for a decade
– Hampered by deployment issues, and a

lack of adoption incentives
– Big push ~2011 as exhaustion looms

IPv6 Deployment

CSE 461 University of Washington 5

Time for
growth!

Source: Google IPv6 Statistics, 30/1/13

Percentage of users accessing Google via IPv6

CSE 461 University of Washington 6

IPv6
• Features large addresses
– 128 bits, most of header

• New notation
– 8 groups of 4 hex digits (16 bits)
– Omit leading zeros, groups of zeros

Ex: 2001:0db8:0000:0000:0000:ff00:0042:8329
à

32 bits

CSE 461 University of Washington 7

IPv6 (2)
• Lots of other, smaller changes
– Streamlined header processing
– Flow label to group of packets
– Better fit with “advanced” features

(mobility, multicasting, security)

32 bits

CSE 461 University of Washington 8

IPv6 Transition
• The Big Problem:
– How to deploy IPv6?
– Fundamentally incompatible with IPv4

• Dozens of approaches proposed
– Dual stack (speak IPv4 and IPv6)
– Translators (convert packets)
– Tunnels (carry IPv6 over IPv4) »

Tunneling
• Native IPv6 islands connected via IPv4
– Tunnel carries IPv6 packets across IPv4 network

CSE 461 University of Washington 9

Tunneling (2)
• Tunnel acts as a single link across IPv4 network

CSE 461 University of Washington 10

User UserTunnel

CSE 461 University of Washington 11

Topic
• What is NAT (Network Address

Translation)? How does it work?
– NAT is widely used at the edges of the

network, e.g., homes

I’m a NAT box too!

Internet

Layering Review
• Remember how layering is meant to work?
– “Routers don’t look beyond the IP header.” Well …

CSE 461 University of Washington 12

TCP

IP

802.11

App

IP

802.11

IP

Ethernet

TCP

IP

802.11

App

IP

802.11

IP

Ethernet

Router

Middleboxes
• Sit “inside the network” but perform “more than IP”

processing on packets to add new functionality
– NAT box, Firewall / Intrusion Detection System

CSE 461 University of Washington 13

TCP

IP

802.11

App

IP

802.11

IP

Ethernet

TCP

IP

802.11

App

IP

802.11

IP

Ethernet

Middlebox

App / TCP

CSE 461 University of Washington 14

Middleboxes (2)
• Advantages
– A possible rapid deployment path

when there is no other option
– Control over many hosts (IT)

• Disadvantages
– Breaking layering interferes with

connectivity; strange side effects
– Poor vantage point for many tasks

CSE 461 University of Washington 15

NAT (Network Address Translation) Box
• NAT box connects an internal

network to an external network
– Many internal hosts are connected

using few external addresses
– Middlebox that “translates addresses”

• Motivated by IP address scarcity
– Controversial at first, now accepted

CSE 461 University of Washington 16

NAT (2)
• Common scenario:

– Home computers use “private” IP addresses
– NAT (in AP/firewall) connects home to ISP

using a single external IP address

ISP

Unmodified computers at home Looks like one
computer outside

NAT box

CSE 461 University of Washington 17

How NAT Works
• Keeps an internal/external table

– Typically uses IP address + TCP port
– This is address and port translation

• Need ports to make mapping 1-1
since there are fewer external IPs

Internal IP:port External IP : port
192.168.1.12 : 5523 44.25.80.3 : 1500
192.168.1.13 : 1234 44.25.80.3 : 1501
192.168.2.20 : 1234 44.25.80.3 : 1502

What ISP thinksWhat host thinks

How NAT Works (2)
• Internal à External:
– Look up and rewrite Source IP/port

CSE 461 University of Washington 18

Internal IP:port External IP : port
192.168.1.12 : 5523 44.25.80.3 : 1500

NAT box

External
destination
IP=X, port=Y

Internal
source

Src =
Dst =

Src =
Dst =

How NAT Works (3)
• External à Internal
– Look up and rewrite Destination IP/port

CSE 461 University of Washington 19

Internal IP:port External IP : port
192.168.1.12 : 5523 44.25.80.3 : 1500

NAT box

External
source

IP=X, port=Y
Internal

destination

Src =
Dst =

Src =
Dst =

How NAT Works (4)
• Need to enter translations in the table for it to work
– Create external name when host makes a TCP connection

CSE 461 University of Washington 20

Internal IP:port External IP : port
192.168.1.12 : 5523

NAT box

External
destination
IP=X, port=Y

Internal
source

Src =
Dst =

Src =
Dst =

CSE 461 University of Washington 21

NAT Downsides
• Connectivity has been broken!
– Can only send incoming packets after

an outgoing connection is set up
– Difficult to run servers or peer-to-peer

apps (Skype) at home

• Doesn’t work so well when there are
no connections (UDP apps)

• Breaks apps that unwisely expose
their IP addresses (FTP)

CSE 461 University of Washington 22

NAT Upsides
• Relieves much IP address pressure
– Many home hosts behind NATs

• Easy to deploy
– Rapidly, and by you alone

• Useful functionality
– Firewall, helps with privacy

• Kinks will get worked out eventually
– “NAT Traversal” for incoming traffic

CSE 461 University of Washington 23

Where we are in the Course
• More fun in the Network Layer!
– We’ve covered packet forwarding
– Now we’ll learn about routing

Physical
Link

Network
Transport
Application

Routing versus Forwarding
• Forwarding is the

process of sending a
packet on its way

• Routing is the process
of deciding in which
direction to send traffic

CSE 461 University of Washington 24

Forward!
packet

Which way?

Which way?

Which way?

Improving on the Spanning Tree
• Spanning tree provides

basic connectivity
– e.g., some path BàC

• Routing uses all links to
find “best” paths
– e.g., use BC, BE, and CE

CSE 461 University of Washington 25

A B C

D E F

A B C

D E F

Unused

Perspective on Bandwidth Allocation
• Routing allocates network bandwidth adapting to

failures; other mechanisms used at other timescales

CSE 461 University of Washington 26

Mechanism Timescale / Adaptation
Load-sensitive routing Seconds / Traffic hotspots
Routing Minutes / Equipment failures
Traffic Engineering Hours / Network load
Provisioning Months / Network customers

Delivery Models
• Different routing used for different delivery models

CSE 461 University of Washington 27

Unicast
(§5.2)

Multicast
(§5.2.8)

Anycast
(§5.2.9)

Broadcast
(§5.2.7)

CSE 461 University of Washington 28

Goals of Routing Algorithms
• We want several properties of any

routing scheme:

Property Meaning
Correctness Finds paths that work
Efficient paths Uses network bandwidth well
Fair paths Doesn’t starve any nodes
Fast convergence Recovers quickly after changes
Scalability Works well as network grows large

CSE 461 University of Washington 29

Rules of Routing Algorithms
• Decentralized, distributed setting

– All nodes are alike; no controller
– Nodes only know what they learn by

exchanging messages with neighbors
– Nodes operate concurrently
– May be node/link/message failures

Who’s there?

CSE 461 University of Washington 30

Topics
• IPv4, IPv6, NATs and all that

• Shortest path routing
• Distance Vector routing
• Flooding
• Link-state routing
• Equal-cost multi-path
• Inter-domain routing (BGP)

This
time

Last
time

CSE 461 University of Washington 31

Topic
• Defining “best” paths with link costs
– These are shortest path routes

Best?

A B

C

D

E

F

G

H

CSE 461 University of Washington 32

What are “Best” paths anyhow?
• Many possibilities:
– Latency, avoid circuitous paths
– Bandwidth, avoid slow links
– Money, avoid expensive links
– Hops, to reduce switching

• But only consider topology
– Ignore workload, e.g., hotspots

A B

C

D

E

F

G

H

CSE 461 University of Washington 33

Shortest Paths
We’ll approximate “best” by a cost
function that captures the factors

– Often call lowest “shortest”

1. Assign each link a cost (distance)
2. Define best path between each

pair of nodes as the path that has
the lowest total cost (or is shortest)

3. Pick randomly to any break ties

CSE 461 University of Washington 34

Shortest Paths (2)
• Find the shortest path A à E

• All links are bidirectional, with
equal costs in each direction
– Can extend model to unequal

costs if needed
A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3

3

3

CSE 461 University of Washington 35

Shortest Paths (3)
• ABCE is a shortest path
• dist(ABCE) = 4 + 2 + 1 = 7

• This is less than:
– dist(ABE) = 8
– dist(ABFE) = 9
– dist(AE) = 10
– dist(ABCDE) = 10

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3

3

3

CSE 461 University of Washington 36

Shortest Paths (4)

• Optimality property:
– Subpaths of shortest paths

are also shortest paths

• ABCE is a shortest path
àSo are ABC, AB, BCE, BC, CE

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3

3

3

CSE 461 University of Washington 37

Sink Trees
• Sink tree for a destination is

the union of all shortest paths
towards the destination
– Similarly source tree

• Find the sink tree for E
A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3

3

3

CSE 461 University of Washington 38

Sink Trees (2)
• Implications:
– Only need to use destination

to follow shortest paths
– Each node only need to send

to the next hop

• Forwarding table at a node
– Lists next hop for each destination
– Routing table may know more

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3

3

3

CSE 461 University of Washington 39

Topic
• How to compute shortest paths

given the network topology
– With Dijkstra’s algorithm

Source tree
for E

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

CSE 461 University of Washington 40

Edsger W. Dijkstra (1930-2002)
• Famous computer scientist
– Programming languages
– Distributed algorithms
– Program verification

• Dijkstra’s algorithm, 1969
– Single-source shortest paths, given

network with non-negative link costs
By Hamilton Richards, CC-BY-SA-3.0, via Wikimedia Commons

CSE 461 University of Washington 41

Dijkstra’s Algorithm
Algorithm:
• Mark all nodes tentative, set distances

from source to 0 (zero) for source, and
∞ (infinity) for all other nodes

• While tentative nodes remain:
– Extract N, a node with lowest distance
– Add link to N to the shortest path tree
– Relax the distances of neighbors of N by

lowering any better distance estimates

Dijkstra’s Algorithm (2)
• Initialization

CSE 461 University of Washington 42

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0 ∞

∞ ∞

∞

∞

∞

We’ll compute
shortest paths

from A ∞

Dijkstra’s Algorithm (3)
• Relax around A

CSE 461 University of Washington 43

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0 ∞

∞ 10

4

∞

∞

∞

Dijkstra’s Algorithm (4)
• Relax around B

CSE 461 University of Washington 44

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0 ∞

8

4

Distance fell!

6

7

7

∞

Dijkstra’s Algorithm (5)
• Relax around C

CSE 461 University of Washington 45

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0

7

4

Distance fell
again!

6

7

7

8

9

Dijkstra’s Algorithm (6)
• Relax around G (say)

CSE 461 University of Washington 46

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0

7

4

Didn’t fall …

6

7

7

8

9

Dijkstra’s Algorithm (7)
• Relax around F (say)

CSE 461 University of Washington 47

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0

7

4

Relax has no effect

6

7

7

8

9

Dijkstra’s Algorithm (8)
• Relax around E

CSE 461 University of Washington 48

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0

7

4

6

7

7

8

9

Dijkstra’s Algorithm (9)
• Relax around D

CSE 461 University of Washington 49

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0

7

4

6

7

7

8

9

Dijkstra’s Algorithm (10)
• Finally, H … done

CSE 461 University of Washington 50

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

0

7

4

6

7

7

8

9

CSE 461 University of Washington 51

Dijkstra Comments
• Finds shortest paths in order of

increasing distance from source
– Leverages optimality property

• Runtime depends on efficiency of
extracting min-cost node
– Superlinear in network size (grows fast)

• Gives complete source/sink tree
– More than needed for forwarding!
– But requires complete topology

CSE 461 University of Washington 52

Topic
• How to compute shortest paths in

a distributed network
– The Distance Vector (DV) approach

Here’s my vector! Here’s mine

CSE 461 University of Washington 53

Distance Vector Routing
• Simple, early routing approach

– Used in ARPANET, and RIP

• One of two main approaches to routing
– Distributed version of Bellman-Ford
– Works, but very slow convergence after

some failures

• Link-state algorithms are now typically
used in practice
– More involved, better behavior

CSE 461 University of Washington 54

Distance Vector Setting
Each node computes its forwarding table
in a distributed setting:

1. Nodes know only the cost to their
neighbors; not the topology

2. Nodes can talk only to their neighbors
using messages

3. All nodes run the same algorithm
concurrently

4. Nodes and links may fail, messages
may be lost

CSE 461 University of Washington 55

Distance Vector Algorithm
Each node maintains a vector of distances
(and next hops) to all destinations

1. Initialize vector with 0 (zero) cost to
self, ∞ (infinity) to other destinations

2. Periodically send vector to neighbors
3. Update vector for each destination by

selecting the shortest distance heard,
after adding cost of neighbor link
– Use the best neighbor for forwarding

Distance Vector (2)
• Consider from the point of view of node A
– Can only talk to nodes B and E

CSE 461 University of Washington 56

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

To Cost
A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞
H ∞

Initial
vector

Distance Vector (3)
• First exchange with B, E; learn best 1-hop routes

CSE 461 University of Washington 57

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

A’s
Cost

A’s
Next

0 --
4 B
∞ --
∞ --
10 E
∞ --
∞ --
∞ --

To B
says

E
says

A ∞ ∞
B 0 ∞
C ∞ ∞
D ∞ ∞
E ∞ 0
F ∞ ∞
G ∞ ∞
H ∞ ∞

B
+4

E
+10

∞ ∞
4 ∞
∞ ∞
∞ ∞
∞ 10
∞ ∞
∞ ∞
∞ ∞

Learned better route

Distance Vector (4)
• Second exchange; learn best 2-hop routes

CSE 461 University of Washington 58

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

A’s
Cost

A’s
Next

0 --
4 B
6 B
12 E
8 B
7 B
7 B
∞ --

To B
says

E
says

A 4 10
B 0 4
C 2 1
D ∞ 2
E 4 0
F 3 2
G 3 ∞
H ∞ ∞

B
+4

E
+10

8 20
4 14
6 11
∞ 12
8 10
7 12
7 ∞
∞ ∞

Distance Vector (4)
• Third exchange; learn best 3-hop routes

CSE 461 University of Washington 59

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

A’s
Cost

A’s
Next

0 --
4 B
6 B
8 B
7 B
7 B
7 B
9 B

To B
says

E
says

A 4 8
B 0 3
C 2 1
D 4 2
E 3 0
F 3 2
G 3 6
H 5 4

B
+4

E
+10

8 18
4 13
6 11
8 12
7 10
7 12
7 16
9 14

Distance Vector (5)
• Subsequent exchanges; converged

CSE 461 University of Washington 60

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

A’s
Cost

A’s
Next

0 --
4 B
6 B
8 B
8 B
7 B
7 B
9 B

To B
says

E
says

A 4 7
B 0 3
C 2 1
D 4 2
E 3 0
F 3 2
G 3 6
H 5 4

B
+4

E
+10

8 17
4 13
6 11
8 12
7 10
7 12
7 16
9 14

CSE 461 University of Washington 61

Distance Vector Dynamics
• Adding routes:
– News travels one hop per exchange

• Removing routes
– When a node fails, no more

exchanges, other nodes forget

• But partitions (unreachable nodes
in divided network) are a problem
– “Count to infinity” scenario

DV Dynamics (2)
• Good news travels quickly, bad news slowly (inferred)

CSE 461 University of Washington 62

“Count to infinity” scenario

Desired convergence

X

CSE 461 University of Washington 63

DV Dynamics (3)
• Various heuristics to address

– e.g., “Split horizon, poison reverse”
(Don’t send route back to where
you learned it from.)

• But none are very effective
– Link state now favored in practice
– Except when very resource-limited

CSE 461 University of Washington 64

RIP (Routing Information Protocol)
• DV protocol with hop count as metric

– Infinity is 16 hops; limits network size
– Includes split horizon, poison reverse

• Routers send vectors every 30 seconds
– Runs on top of UDP
– Time-out in 180 secs to detect failures

• RIPv1 specified in RFC1058 (1988)

CSE 461 University of Washington 65

Topic
• How to broadcast a message to all

nodes in the network with flooding
– Simple mechanism, but inefficient

Flood!

CSE 461 University of Washington 66

Flooding
• Rule used at each node:
– Sends an incoming message on to

all other neighbors
– Remember the message so that it

is only flood once

• Inefficient because one node may
receive multiple copies of message

Flooding (2)
• Consider a flood from A; first reaches B via AB, E via AE

CSE 461 University of Washington 67

A B

C

D

E

F

G

H

Flooding (3)
• Next B floods BC, BE, BF, BG, and E floods EB, EC, ED, EF

CSE 461 University of Washington 68

A B

C

D

E

F

G

H

F gets 2 copies

E and B send
to each other

Flooding (4)
• C floods CD, CH; D floods DC; F floods FG; G floods GF

CSE 461 University of Washington 69

A B

C

D

E

F

G

H

F gets another copy

Flooding (5)
• H has no-one to flood … and we’re done

CSE 461 University of Washington 70

A B

C

D

E

F

G

H

Each link carries the
message, and in at
least one direction

CSE 461 University of Washington 71

Flooding Details
• Remember message (to stop flood)

using source and sequence number
– So next message (with higher

sequence number) will go through

• To make flooding reliable, use ARQ
– So receiver acknowledges, and

sender resends if needed

CSE 461 University of Washington 72

Topic
• How to compute shortest paths in

a distributed network
– The Link-State (LS) approach

Flood! … then compute

CSE 461 University of Washington 73

Link-State Routing
• One of two approaches to routing
– Trades more computation than

distance vector for better dynamics

• Widely used in practice
– Used in Internet/ARPANET from 1979
– Modern networks use OSPF and IS-IS

CSE 461 University of Washington 74

Link-State Setting
Nodes compute their forwarding table in the
same distributed setting as for distance vector:

1. Nodes know only the cost to their
neighbors; not the topology

2. Nodes can talk only to their neighbors
using messages

3. All nodes run the same algorithm
concurrently

4. Nodes/links may fail, messages may be lost

CSE 461 University of Washington 75

Link-State Algorithm
Proceeds in two phases:
1. Nodes flood topology in the form

of link state packets
– Each node learns full topology

2. Each node computes its own
forwarding table
– By running Dijkstra (or equivalent)

CSE 461 University of Washington 76

Phase 1: Topology Dissemination
• Each node floods link state packet

(LSP) that describes their portion
of the topology

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

Seq. #
A 10
B 4
C 1
D 2
F 2

Node E’s LSP
flooded to A, B,
C, D, and F

CSE 461 University of Washington 77

Phase 2: Route Computation
• Each node has full topology

– By combining all LSPs

• Each node simply runs Dijkstra
– Some replicated computation, but

finds required routes directly
– Compile forwarding table from

sink/source tree
– That’s it folks!

Forwarding Table

CSE 461 University of Washington 78

To Next
A C
B C
C C
D D
E --
F F
G F
H CA B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

Source Tree for E (from Dijkstra) E’s Forwarding Table

Handling Changes
• On change, flood updated LSPs, and re-compute routes
– E.g., nodes adjacent to failed link or node initiate

CSE 461 University of Washington 79

A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3
3

3

XXXXSeq. #
A 4
C 2
E 4
F 3
G ∞

B’s LSP
Seq. #

B 3
E 2
G ∞

F’s LSP Failure!

CSE 461 University of Washington 80

Handling Changes (2)
• Link failure
– Both nodes notice, send updated LSPs
– Link is removed from topology

• Node failure
– All neighbors notice a link has failed
– Failed node can’t update its own LSP
– But it is OK: all links to node removed

CSE 461 University of Washington 81

Handling Changes (3)
• Addition of a link or node
– Add LSP of new node to topology
– Old LSPs are updated with new link

• Additions are the easy case …

CSE 461 University of Washington 82

Link-State Complications
• Things that can go wrong:

– Seq. number reaches max, or is corrupted
– Node crashes and loses seq. number
– Network partitions then heals

• Strategy:
– Include age on LSPs and forget old

information that is not refreshed

• Much of the complexity is due to
handling corner cases (as usual!)

DV/LS Comparison

CSE 461 University of Washington 83

Goal Distance Vector Link-State

Correctness Distributed Bellman-Ford Replicated Dijkstra

Efficient paths Approx. with shortest paths Approx. with shortest paths

Fair paths Approx. with shortest paths Approx. with shortest paths

Fast convergence Slow – many exchanges Fast – flood and compute

Scalability Excellent – storage/compute Moderate – storage/compute

CSE 461 University of Washington 84

IS-IS and OSPF Protocols
• Widely used in large enterprise

and ISP networks
– IS-IS = Intermediate System to

Intermediate System
– OSPF = Open Shortest Path First

• Link-state protocol with many
added features
– E.g., “Areas” for scalability

CSE 461 University of Washington 85

Topic
• More on shortest path routes
– Allow multiple shortest paths

Use ABE as well as
ABCE from AàE

A B

C

D

E

F

G

H

CSE 461 University of Washington 86

Multipath Routing
• Allow multiple routing paths from

node to destination be used at once
– Topology has them for redundancy
– Using them can improve performance

• Questions:
– How do we find multiple paths?
– How do we send traffic along them?

CSE 461 University of Washington 87

Equal-Cost Multipath Routes
• One form of multipath routing

– Extends shortest path model by
keeping set if there are ties

• Consider AàE
– ABE = 4 + 4 = 8
– ABCE = 4 + 2 + 2 = 8
– ABCDE = 4 + 2 + 1 + 1 = 8
– Use them all!

A B

C

D

E

F

G

H

2

2

10

1

1
4

2
4

4

3

3

3

CSE 461 University of Washington 88

Source “Trees”
• With ECMP, source/sink “tree” is a

directed acyclic graph (DAG)
– Each node has set of next hops
– Still a compact representation

Tree DAG

CSE 461 University of Washington 89

Source “Trees” (2)
• Find the source “tree” for E
– Procedure is Dijkstra, simply

remember set of next hops
– Compile forwarding table similarly,

may have set of next hops

• Straightforward to extend DV too
– Just remember set of neighbors

A B

C

D

E

F

G

H

2

2

10

1

1
4

2
4

4

3

3

3

Source “Trees” (3)

CSE 461 University of Washington 90

Source Tree for E E’s Forwarding Table

A B

C

D

E

F

G

H

2

2

10

1

1
4

2
4

4

3

3

3

Node Next hops
A B, C, D
B B, C, D
C C, D
D D
E --
F F
G F
H C, D

New for
ECMP

CSE 461 University of Washington 91

Forwarding with ECMP
• Could randomly pick a next hop for

each packet based on destination
– Balances load, but adds jitter

• Instead, try to send packets from a given
source/destination pair on the same path
– Source/destination pair is called a flow
– Map flow identifier to single next hop
– No jitter within flow, but less balanced

Forwarding with ECMP (2)

CSE 461 University of Washington 92

A B

C

D

E

F

G

H

2

2

10

1

1
4

2
4

4

3

3

3

Multipath routes from F/E to C/H E’s Forwarding Choices

Flow Possible
next hops

Example
choice

F à H C, D D
F à C C, D D
E à H C, D C
E à C C, D C

Use both paths to get
to one destination

