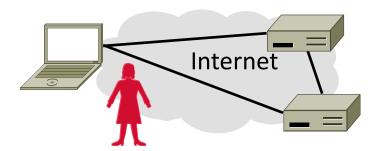
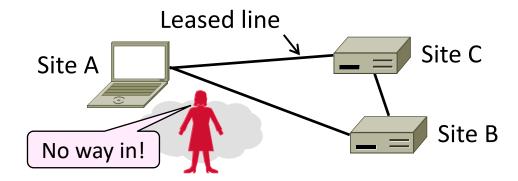
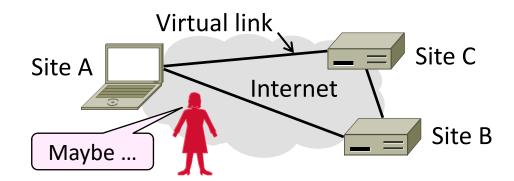

Topic

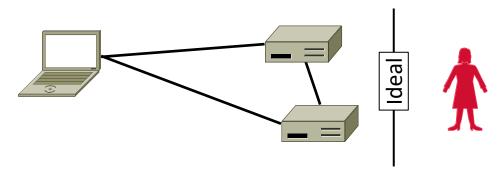

- Virtual Private Networks (VPNs)
 - Run as closed networks on Internet
 - Use IPSEC to secure messages


Motivation

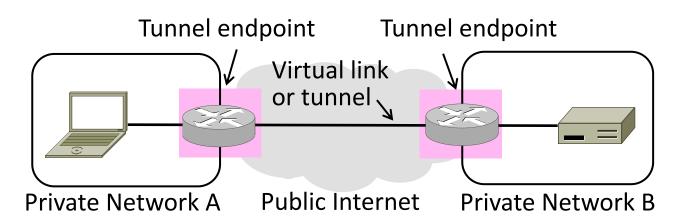
- The best part of IP connectivity
 - You can send to any other host
- The worst part of IP connectivity
 - Any host can send packets to you!
 - There's nasty stuff out there ...


Motivation (2)

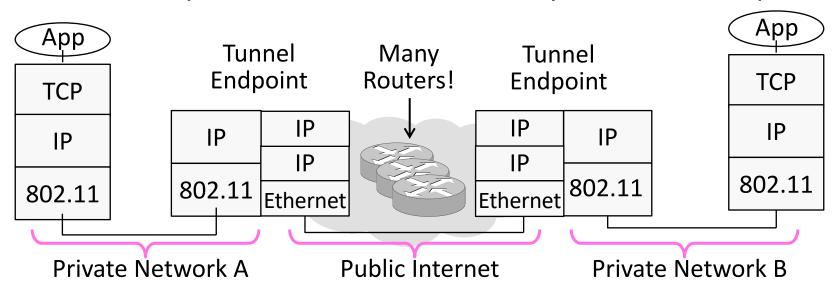
- Often desirable to separate network from the Internet, e.g., a company
 - Private network with leased lines
 - Physically separated from Internet


Motivation (3)

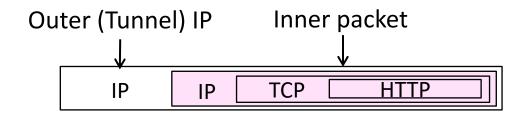
- Idea: Use the public Internet instead of leased lines – cheaper!
 - Logically separated from Internet ...
 - This is a Virtual Private Network (VPN)


Goal and Threat Model

- Goal is to keep a logical network (VPN) separate from the Internet while using it for connectivity
 - Threat is Trudy may access VPN and intercept or tamper with messages


Tunneling

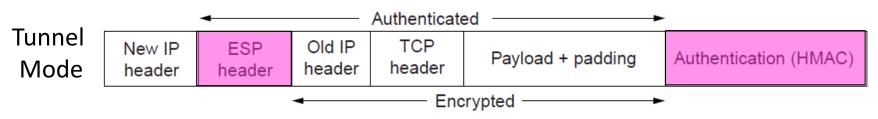
- How can we build a virtual link? With tunneling!
 - Hosts in private network send to each other normally
 - To cross virtual link (tunnel), endpoints encapsulate packet


Tunneling (2)

- Tunnel endpoints encapsulate IP packets ("IP in IP")
 - Add/modify outer IP header for delivery to remote endpoint

Tunneling (3)

- Simplest encapsulation wraps packet with another IP header
 - Outer (tunnel) IP header has tunnel endpoints as source/destination
 - Inner packet has private network IP addresses as source/destination

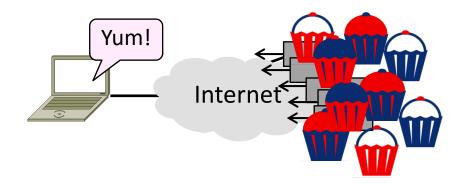


Tunneling (4)

- Tunneling alone is not secure ...
 - No confidentiality, integrity/ authenticity
 - Trudy can read, inject her own messages
 - We require cryptographic protections!
- IPSEC (IP Security) is often used to secure VPN tunnels

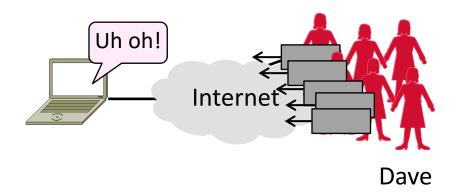
IPSEC (IP Security)

- Longstanding effort to secure the IP layer
 - Adds confidentiality, integrity/authenticity
- IPSEC operation:
 - Keys are set up for communicating host pairs
 - Communication becomes more connection-oriented
 - Header and trailer added to protect IP packets
 - Encapsulating Security Payloads (ESP) provide confidentiality,
 data integrity, authentication, and anti-replay service

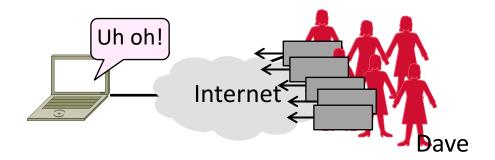


Takeaways

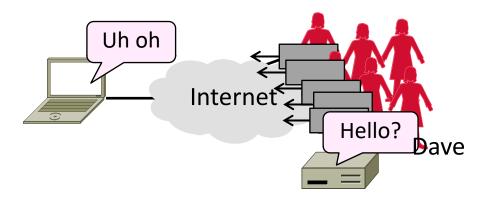
- VPNs are useful for building networks on top of the Internet
 - Virtual links encapsulate packets
 - Alters IP connectivity for hosts
- VPNs need crypto to secure messages
 - Typically IPSEC is used for confidentiality, integrity/authenticity


Topic

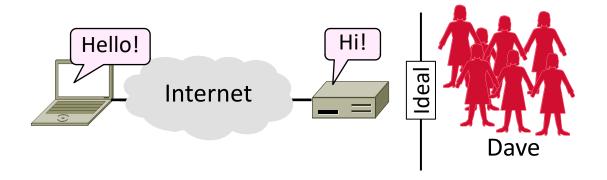
- Distributed Denial-of-Service (DDOS)
 - An attack on network availability


Topic

- Distributed Denial-of-Service (DDOS)
 - An attack on network availability


Motivation

- The best part of IP connectivity
 - You can send to any other host
- The worst part of IP connectivity
 - Any host can send packets to you!

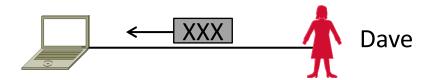

Motivation (2)

- Flooding a host with many packets can interfere with its IP connectivity
 - Host may become unresponsive
 - This is a form of denial-of-service

Goal and Threat Model

- Goal is for host to keep network connectivity for desired services
 - Threat is Dave may overwhelm host with undesired traffic

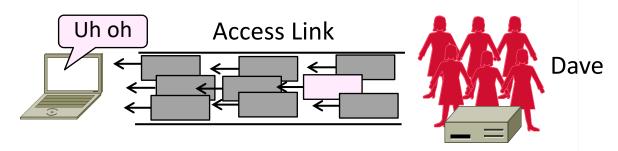
Internet Reality


- Distributed Denial-of-Service is a huge problem!
 - Akamai Q3-12 reports DDOS against
 US banks peaking at 65 Gbps ...
- There are no great solutions
 - CDNs, network traffic filtering, and best practices all help

Denial-of-Service

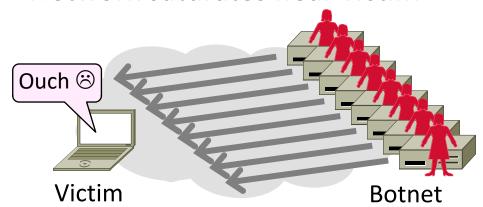
- <u>Denial-of-service</u> means a system is made unavailable to intended users
 - Typically because its resources are consumed by attackers instead
- In the network context:
 - "System" means server
 - "Resources" mean bandwidth (network) or CPU/memory (host)

Host Denial-of-Service

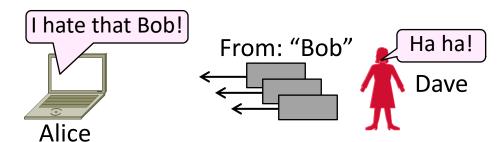

- Strange packets can sap host resources!
 - "Ping of Death" malformed packet
 - "SYN flood" sends many TCP connect requests and never follows up
 - Few bad packets can overwhelm host

- Patches exist for these vulnerabilities
 - Read about "SYN cookies" for interest

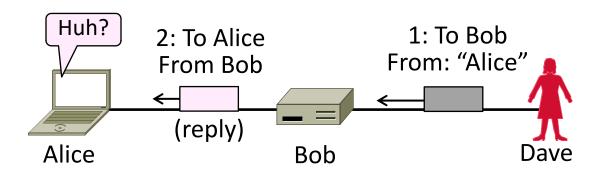
Network Denial-of-Service


- Network DOS needs many packets
 - To saturate network links
 - Causes high congestion/loss

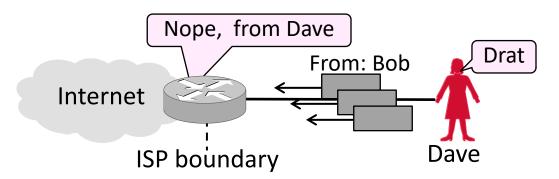
 Helpful to have many attackers ... or <u>Distributed Denial-of-Service</u>


Distributed Denial-of-Service (DDOS)

- Botnet provides many attackers in the form of compromised hosts
 - Hosts send traffic flood to victim
 - Network saturates near victim


Complication: Spoofing

- Attackers can falsify their IP address
 - Put fake source address on packets
 - Historically network doesn't check
 - Hides location of the attackers
 - Called IP address spoofing


Spoofing (2)

- Actually, it's worse than that
 - Dave can trick Bob into really sending packets to Alice
 - To do so, Dave spoofs Alice to Bob

Best Practice: Ingress Filtering

- Idea: Validate the IP source address of packets at ISP boundary (Duh!)
 - Ingress filtering is a best practice, but deployment has been slow

Flooding Defenses

- 1. Increase network capacity around the server; harder to cause loss
 - Use a CDN for high peak capacity
- 2. Filter out attack traffic within the network (at routers)
 - The earlier the filtering, the better
 - Ultimately what is needed, but ad hoc measures by ISPs today