
CSE 461 University of Washington 1

Where we are in the Course
• Starting the Transport Layer!
– Builds on the network layer to deliver

data across networks for applications
with the desired reliability or quality

Physical
Link

Network
Transport
Application

Recall
• Transport layer provides end-to-end connectivity

across the network

CSE 461 University of Washington 2

TCP

IP

802.11

app

IP

802.11

IP

Ethernet

TCP

IP
Ethernet

app

RouterHost Host

CSE 461 University of Washington 3

Recall (2)
• Segments carry application data

across the network
• Segments are carried within

packets within frames

802.11 IP TCP App, e.g., HTTP

Segment

Packet
Frame

CSE 461 University of Washington 4

Transport Layer Services
• Provide different kinds of data

delivery across the network to
applications

Unreliable Reliable
Messages Datagrams (UDP)
Bytestream Streams (TCP)

Comparison of Internet Transports
• TCP is full-featured, UDP is a glorified packet

CSE 461 University of Washington 5

TCP (Streams) UDP (Datagrams)
Connections Datagrams

Bytes are delivered once,
reliably, and in order

Messages may be lost,
reordered, duplicated

Arbitrary length content Limited message size
Flow control matches

sender to receiver
Can send regardless

of receiver state
Congestion control matches

sender to network
Can send regardless

of network state

CSE 461 University of Washington 6

Ports
• Application process is identified by the

tuple IP address, protocol, and port
– Ports are 16-bit integers representing local

“mailboxes” that a process leases

• Servers often bind to “well-known ports”
– <1024, require administrative privileges

• Clients often assigned “ephemeral” ports
– Chosen by OS, used temporarily

Some Well-Known Ports

CSE 461 University of Washington 7

Port Protocol Use
20, 21 FTP File transfer

22 SSH Remote login, replacement for Telnet
25 SMTP Email
80 HTTP World Wide Web

110 POP-3 Remote email access
143 IMAP Remote email access
443 HTTPS Secure Web (HTTP over SSL/TLS)
543 RTSP Media player control
631 IPP Printer sharing

CSE 461 University of Washington 8

Topic
• Sending messages with UDP
– A shim layer on packets

I just want to
send a packet!

Network

CSE 461 University of Washington 9

User Datagram Protocol (UDP)
• Used by apps that don’t want

reliability or bytestreams
– Voice-over-IP (unreliable)
– DNS, RPC (message-oriented)
– DHCP (bootstrapping)

(If application wants reliability and
messages then it has work to do!)

CSE 461 University of Washington 10

UDP Buffering
App

Port Mux/Demux

App AppApplication

Transport
(TCP)

Network (IP) packet

Message queues

Ports

CSE 461 University of Washington 11

Topic
• How to set up connections
– We’ll see how TCP does it

SYN! ACK!

Network

SYNACK!

CSE 461 University of Washington 12

Connection Establishment
• Both sender and receiver must be ready

before we start the transfer of data
– Need to agree on a set of parameters
– e.g., the Maximum Segment Size (MSS)

• This is signaling
– It sets up state at the endpoints
– Like “dialing” for a telephone call

CSE 461 University of Washington 13

Three-Way Handshake
• Used in TCP; opens connection for

data in both directions

• Each side probes the other with a
fresh Initial Sequence Number (ISN)
– Sends on a SYNchronize segment
– Echo on an ACKnowledge segment

• Chosen to be robust even against
delayed duplicates

Active party
(client)

Passive party
(server)

CSE 461 University of Washington 14

Three-Way Handshake (2)
• Three steps:
– Client sends SYN(x)
– Server replies with SYN(y)ACK(x+1)
– Client replies with ACK(y+1)
– SYNs are retransmitted if lost

• Sequence and ack numbers
carried on further segments

1

2

3

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)
Time

CSE 461 University of Washington 15

Connection Release
• Orderly release by both parties when

done
– Delivers all pending data and “hangs up”
– Cleans up state in sender and receiver

• Key problem is to provide reliability
while releasing
– TCP uses a “symmetric” close in which

both sides shutdown independently

CSE 461 University of Washington 16

TCP Connection Release
• Two steps:
– Active sends FIN(x), passive ACKs
– Passive sends FIN(y), active ACKs
– FINs are retransmitted if lost

• Each FIN/ACK closes one
direction of data transfer

Active party Passive party

CSE 461 University of Washington 17

TCP Connection Release (2)
• Two steps:
– Active sends FIN(x), passive ACKs
– Passive sends FIN(y), active ACKs
– FINs are retransmitted if lost

• Each FIN/ACK closes one
direction of data transfer

Active party Passive party

1

2

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)

CSE 461 University of Washington 18

Topic
• The sliding window algorithm
– Pipelining and reliability
– Building on Stop-and-Wait

Yeah!

Network

CSE 461 University of Washington 19

Recall
• ARQ with one message at a time is

Stop-and-Wait (normal case below)

Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1

CSE 461 University of Washington 20

Limitation of Stop-and-Wait
• It allows only a single message to

be outstanding from the sender:
– Fine for LAN (only one frame fit)
– Not efficient for network paths with

BD >> 1 packet

CSE 461 University of Washington 21

Limitation of Stop-and-Wait (2)
• Example: R=1 Mbps, D = 50 ms
– RTT (Round Trip Time) = 2D = 100 ms
– How many packets/sec?

– What if R=10 Mbps?

CSE 461 University of Washington 22

Sliding Window
• Generalization of stop-and-wait
– Allows W packets to be outstanding
– Can send W packets per RTT (=2D)

– Pipelining improves performance
– Need W=2BD to fill network path

CSE 461 University of Washington 23

Sliding Window (2)
• What W will use the network capacity?
• Ex: R=1 Mbps, D = 50 ms

• Ex: What if R=10 Mbps?

CSE 461 University of Washington 24

Sliding Window (3)
• Ex: R=1 Mbps, D = 50 ms

– 2BD = 106 b/sec x 100. 10-3 sec = 100 kbit
– W = 2BD = 10 packets of 1250 bytes

• Ex: What if R=10 Mbps?
– 2BD = 1000 kbit
– W = 2BD = 100 packets of 1250 bytes

CSE 461 University of Washington 25

Sliding Window Protocol
• Many variations, depending on

how buffers, acknowledgements,
and retransmissions are handled

• Go-Back-N »
– Simplest version, can be inefficient

• Selective Repeat »
– More complex, better performance

CSE 461 University of Washington 26

Sliding Window – Sender
• Sender buffers up to W segments

until they are acknowledged
– LFS=LAST FRAME SENT, LAR=LAST ACK REC’D
– Sends while LFS – LAR ≤ W

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

Available

seq. number

Sliding
Window

CSE 461 University of Washington 27

Sliding Window – Sender (2)
• Transport accepts another segment

of data from the Application ...
– Transport sends it (as LFS–LAR à 5)

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

seq. number

4

CSE 461 University of Washington 28

Sliding Window – Sender (3)
• Next higher ACK arrives from peer…
– Window advances, buffer is freed
– LFS–LAR à 4 (can send one more)

.. 5 6 7 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked 3 ..Unavail.

Available

seq. number

..2 Unacked

CSE 461 University of Washington 29

Sliding Window – Go-Back-N
• Receiver keeps only a single packet

buffer for the next segment
– State variable, LAS = LAST ACK SENT

• On receive:
– If seq. number is LAS+1, accept and

pass it to app, update LAS, send ACK
– Otherwise discard (as out of order)

CSE 461 University of Washington 30

Sliding Window – Selective Repeat
• Receiver passes data to app in order,

and buffers out-of-order segments to
reduce retransmissions

• ACK conveys highest in-order segment,
plus hints about out-of-order segments

• TCP uses a selective repeat design;
we’ll see the details later

CSE 461 University of Washington 31

Sliding Window – Selective Repeat (2)

• Buffers W segments, keeps state
variable, LAS = LAST ACK SENT

• On receive:
– Buffer segments [LAS+1, LAS+W]
– Pass up to app in-order segments from

LAS+1, and update LAS
– Send ACK for LAS regardless

CSE 461 University of Washington 32

Sliding Window – Retransmissions
• Go-Back-N sender uses a single timer to

detect losses
– On timeout, resends buffered packets

starting at LAR+1

• Selective Repeat sender uses a timer
per unacked segment to detect losses
– On timeout for segment, resend it
– Hope to resend fewer segments

CSE 461 University of Washington 33

Sequence Numbers
• Need more than 0/1 for Stop-and-Wait …

– But how many?

• For Selective Repeat, need W numbers for
packets, plus W for acks of earlier packets
– 2W seq. numbers
– Fewer for Go-Back-N (W+1)

• Typically implement seq. number with an N-
bit counter that wraps around at 2N—1
– E.g., N=8: …, 253, 254, 255, 0, 1, 2, 3, …

CSE 461 University of Washington 34

Sequence Time Plot

Time

Se
q.

 N
um

be
r

Acks
(at Receiver)

Delay (=RTT/2)

Transmissions
(at Sender)

CSE 461 University of Washington 35

Sequence Time Plot (2)

Time

Se
q.

 N
um

be
r

Go-Back-N scenario

CSE 461 University of Washington 36

Sequence Time Plot (3)

Time

Se
q.

 N
um

be
r Loss

Timeout

Retransmissions

CSE 461 University of Washington 37

Topic
• Adding flow control to the sliding

window algorithm
– To slow the over-enthusiastic sender

Please slow down!

Network

CSE 461 University of Washington 38

Problem
• Sliding window uses pipelining to

keep the network busy
– What if the receiver is overloaded?

Streaming video
Big Iron Wee Mobile

Arg …

CSE 461 University of Washington 39

Sliding Window – Receiver
• Consider receiver with W buffers
– LAS=LAST ACK SENT, app pulls in-order

data from buffer with recv() call

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

seq. number

555 5Acceptable

Sliding
Window

CSE 461 University of Washington 40

Sliding Window – Receiver (2)
• Suppose the next two segments

arrive but app does not call recv()

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

Acceptable

seq. number

555 5

CSE 461 University of Washington 41

Sliding Window – Receiver (3)
• Suppose the next two segments

arrive but app does not call recv()
– LAS rises, but we can’t slide window!

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

Acceptable

seq. number

555 544Acked

CSE 461 University of Washington 42

Sliding Window – Receiver (4)
• If further segments arrive (even in

order) we can fill the buffer
– Must drop segments until app recvs!

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

Nothing
Acceptable

seq. number

555 544Acked 44 4Acked

CSE 461 University of Washington 43

Sliding Window – Receiver (5)
• App recv() takes two segments
– Window slides (phew)

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

Acceptable

seq. number

555 5 44 4Acked

CSE 461 University of Washington 44

Flow Control
• Avoid loss at receiver by telling

sender the available buffer space
– WIN=#Acceptable, not W (from LAS)

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

Acceptable

seq. number

555 544Acked

CSE 461 University of Washington 45

Flow Control (2)
• Sender uses the lower of the sliding

window and flow control window
(WIN) as the effective window size

.. 5 6 7 5 2 3 ..

LAS

WIN=3

Finished 3 ..Too high

seq. number

555 544Acked

CSE 461 University of Washington 46

Flow Control (3)
• TCP-style example
– SEQ/ACK sliding window
– Flow control with WIN

– SEQ + length < ACK+WIN

– 4KB buffer at receiver
– Circular buffer of bytes

CSE 461 University of Washington 47

Topic
• How to set the timeout for

sending a retransmission
– Adapting to the network path

Lost?

Network

CSE 461 University of Washington 48

Retransmissions
• With sliding window, the strategy

for detecting loss is the timeout
– Set timer when a segment is sent
– Cancel timer when ack is received
– If timer fires, retransmit data as lost

Retransmit!

CSE 461 University of Washington 49

Timeout Problem
• Timeout should be “just right”

– Too long wastes network capacity
– Too short leads to spurious resends
– But what is “just right”?

• Easy to set on a LAN (Link)
– Short, fixed, predictable RTT

• Hard on the Internet (Transport)
– Wide range, variable RTT

Example of RTTs

CSE 461 University of Washington 50

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200Seconds

Ro
un

d
Tr

ip
 T

im
e

(m
s)

BCNàSEAàBCN

Example of RTTs (2)

CSE 461 University of Washington 51

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200Seconds

Ro
un

d
Tr

ip
 T

im
e

(m
s) Variation due to queuing at routers,

changes in network paths, etc.

BCNàSEAàBCN

Propagation (+transmission) delay ≈ 2D

Example of RTTs (3)

CSE 461 University of Washington 52

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200Seconds

Ro
un

d
Tr

ip
 T

im
e

(m
s)

Timer too high!

Timer too low!

Need to adapt to the
network conditions

CSE 461 University of Washington 53

Adaptive Timeout
• Keep smoothed estimates of the RTT (1)

and variance in RTT (2)
– Update estimates with a moving average
1. SRTTN+1 = 0.9*SRTTN + 0.1*RTTN+1

2. SvarN+1 = 0.9*SvarN + 0.1*|RTTN+1– SRTTN+1|

• Set timeout to a multiple of estimates
– To estimate the upper RTT in practice
– TCP TimeoutN = SRTTN + 4*SvarN

Example of Adaptive Timeout

CSE 461 University of Washington 54

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200Seconds

RT
T

(m
s)

SRTT

Svar

Example of Adaptive Timeout (2)

CSE 461 University of Washington 55

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200Seconds

RT
T

(m
s)

Timeout (SRTT + 4*Svar)

Early
timeout

CSE 461 University of Washington 56

Adaptive Timeout (2)
• Simple to compute, does a good

job of tracking actual RTT
– Little “headroom” to lower
– Yet very few early timeouts

• Turns out to be important for good
performance and robustness

