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Where we are in the Course
• Starting the Transport Layer!
– Builds on the network layer to deliver 

data across networks for applications 
with the desired reliability or quality

Physical
Link

Network
Transport
Application



Recall
• Transport layer provides end-to-end connectivity    

across the network
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Recall (2)
• Segments carry application data 

across the network
• Segments are carried within 

packets within frames

802.11 IP TCP App, e.g., HTTP

Segment

Packet
Frame
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Transport Layer Services
• Provide different kinds of data 

delivery across the network to 
applications

Unreliable Reliable
Messages Datagrams (UDP)
Bytestream Streams (TCP)



Comparison of Internet Transports
• TCP is full-featured, UDP is a glorified packet
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TCP (Streams) UDP (Datagrams)
Connections Datagrams

Bytes are delivered once, 
reliably, and in order

Messages may be lost, 
reordered, duplicated

Arbitrary length content Limited message size
Flow control matches 

sender to receiver
Can send regardless

of receiver state
Congestion control matches 

sender to network
Can send regardless

of network state
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Ports
• Application process is identified by the 

tuple IP address, protocol, and port
– Ports are 16-bit integers representing local 

“mailboxes” that a process leases

• Servers often bind to “well-known ports”
– <1024, require administrative privileges

• Clients often assigned “ephemeral” ports
– Chosen by OS, used temporarily 



Some Well-Known Ports
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Port Protocol Use
20, 21 FTP File transfer

22 SSH Remote login, replacement for Telnet
25 SMTP Email
80 HTTP World Wide Web

110 POP-3 Remote email access
143 IMAP Remote email access
443 HTTPS Secure Web (HTTP over SSL/TLS)
543 RTSP Media player control
631 IPP Printer sharing
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Topic
• Sending messages with UDP
– A shim layer on packets

I just want to 
send a packet!

Network
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User Datagram Protocol (UDP)
• Used by apps that don’t want 

reliability or bytestreams
– Voice-over-IP (unreliable)
– DNS, RPC (message-oriented)
– DHCP (bootstrapping)

(If application wants reliability and 
messages then it has work to do!)
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UDP Buffering
App

Port Mux/Demux

App AppApplication

Transport
(TCP)

Network (IP) packet

Message queues

Ports
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Topic
• How to set up connections
– We’ll see how TCP does it

SYN! ACK!

Network

SYNACK!
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Connection Establishment
• Both sender and receiver must be ready 

before we start the transfer of data
– Need to agree on a set of parameters
– e.g., the Maximum Segment Size (MSS)

• This is signaling
– It sets up state at the endpoints
– Like “dialing” for a telephone call
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Three-Way Handshake
• Used in TCP; opens connection for 

data in both directions

• Each side probes the other with a 
fresh Initial Sequence Number (ISN)
– Sends on a SYNchronize segment
– Echo on an ACKnowledge segment

• Chosen to be robust even against 
delayed duplicates

Active party
(client)

Passive party
(server)
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Three-Way Handshake (2)
• Three steps:
– Client sends SYN(x)
– Server replies with SYN(y)ACK(x+1)
– Client replies with ACK(y+1)
– SYNs are retransmitted if lost

• Sequence and ack numbers 
carried on further segments

1

2

3

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)
Time
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Connection Release
• Orderly release by both parties when 

done
– Delivers all pending data and “hangs up”
– Cleans up state in sender and receiver

• Key problem is to provide reliability 
while releasing
– TCP uses a “symmetric” close in which 

both sides shutdown independently
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TCP Connection Release
• Two steps:
– Active sends FIN(x), passive ACKs
– Passive sends FIN(y), active ACKs
– FINs are retransmitted if lost

• Each FIN/ACK closes one 
direction of data transfer

Active party Passive party
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TCP Connection Release (2)
• Two steps:
– Active sends FIN(x), passive ACKs
– Passive sends FIN(y), active ACKs
– FINs are retransmitted if lost

• Each FIN/ACK closes one 
direction of data transfer

Active party Passive party

1

2

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)
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Topic
• The sliding window algorithm
– Pipelining and reliability
– Building on Stop-and-Wait 

Yeah!

Network
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Recall
• ARQ with one message at a time is 

Stop-and-Wait (normal case below)

Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1
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Limitation of Stop-and-Wait
• It allows only a single message to 

be outstanding from the sender:
– Fine for LAN (only one frame fit)
– Not efficient for network paths with 

BD >> 1 packet
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Limitation of Stop-and-Wait (2)
• Example: R=1 Mbps, D = 50 ms
– RTT (Round Trip Time) = 2D = 100 ms
– How many packets/sec? 

– What if R=10 Mbps?
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Sliding Window
• Generalization of stop-and-wait
– Allows W packets to be outstanding
– Can send W packets per RTT (=2D)

– Pipelining improves performance 
– Need W=2BD to fill network path
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Sliding Window (2)
• What W will use the network capacity?
• Ex: R=1 Mbps, D = 50 ms

• Ex: What if R=10 Mbps?



CSE 461 University of Washington 24

Sliding Window (3)
• Ex: R=1 Mbps, D = 50 ms

– 2BD = 106 b/sec x 100. 10-3 sec = 100 kbit
– W = 2BD = 10 packets of 1250 bytes

• Ex: What if R=10 Mbps?
– 2BD = 1000 kbit
– W = 2BD = 100 packets of 1250 bytes
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Sliding Window Protocol
• Many variations, depending on       

how buffers, acknowledgements,    
and retransmissions are handled

• Go-Back-N »
– Simplest version, can be inefficient

• Selective Repeat »
– More complex, better performance
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Sliding Window – Sender 
• Sender buffers up to W segments        

until they are acknowledged
– LFS=LAST FRAME SENT, LAR=LAST ACK REC’D
– Sends while LFS – LAR ≤ W 

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

Available

seq. number

Sliding
Window
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Sliding Window – Sender (2) 
• Transport accepts another segment 

of data from the Application ...
– Transport sends it (as LFS–LAR à 5)

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

seq. number

4
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Sliding Window – Sender (3) 
• Next higher ACK arrives from peer…
– Window advances, buffer is freed 
– LFS–LAR à 4 (can send one more) 

.. 5 6 7 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked 3 ..Unavail.

Available

seq. number

..2 Unacked
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Sliding Window – Go-Back-N
• Receiver keeps only a single packet 

buffer for the  next segment
– State variable, LAS = LAST ACK SENT

• On receive:
– If seq. number is LAS+1, accept and 

pass it to app, update LAS, send ACK
– Otherwise discard (as out of order)
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Sliding Window – Selective Repeat
• Receiver passes data to app in order,   

and buffers out-of-order segments to 
reduce retransmissions

• ACK conveys highest in-order segment, 
plus hints about out-of-order segments

• TCP uses a selective repeat design;     
we’ll see the details later
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Sliding Window – Selective Repeat (2)

• Buffers W segments, keeps state 
variable, LAS = LAST ACK SENT

• On receive:
– Buffer segments [LAS+1, LAS+W] 
– Pass up to app in-order segments from 

LAS+1, and update LAS
– Send ACK for LAS regardless
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Sliding Window – Retransmissions
• Go-Back-N sender uses a single timer     to 

detect losses
– On timeout, resends buffered packets 

starting at LAR+1

• Selective Repeat sender uses a timer    
per unacked segment to detect losses
– On timeout for segment, resend it
– Hope to resend fewer segments
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Sequence Numbers
• Need more than 0/1 for Stop-and-Wait …

– But how many?

• For Selective Repeat, need W numbers for 
packets, plus W for acks of earlier packets
– 2W seq. numbers
– Fewer for Go-Back-N (W+1)

• Typically implement seq. number with an N-
bit counter that wraps around at 2N—1 
– E.g., N=8:   …, 253, 254, 255, 0, 1, 2, 3, …
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Sequence Time Plot
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Transmissions
(at Sender)
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Sequence Time Plot (2)

Time

Se
q.

 N
um
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r

Go-Back-N scenario
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Sequence Time Plot (3)
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Retransmissions
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Topic
• Adding flow control to the sliding 

window algorithm
– To slow the over-enthusiastic sender 

Please slow down!

Network



CSE 461 University of Washington 38

Problem
• Sliding window uses pipelining to 

keep the network busy
– What if the receiver is overloaded?

Streaming video
Big Iron Wee Mobile

Arg …
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Sliding Window – Receiver 
• Consider receiver with W buffers
– LAS=LAST ACK SENT, app pulls in-order 

data from buffer with recv() call

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

seq. number

555 5Acceptable

Sliding
Window
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Sliding Window – Receiver (2) 
• Suppose the next two segments 

arrive but app does not call recv()

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

Acceptable

seq. number

555 5
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Sliding Window – Receiver (3) 
• Suppose the next two segments 

arrive but app does not call recv()
– LAS rises, but we can’t slide window!

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

Acceptable

seq. number

555 544Acked
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Sliding Window – Receiver (4) 
• If further segments arrive (even in 

order) we can fill the buffer 
– Must drop segments until app recvs!

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

Nothing
Acceptable

seq. number

555 544Acked 44 4Acked
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Sliding Window – Receiver (5) 
• App recv() takes two segments
– Window slides (phew)

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

Acceptable

seq. number

555 5 44 4Acked
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Flow Control
• Avoid loss at receiver by telling 

sender the available buffer space
– WIN=#Acceptable, not W (from LAS)

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

Acceptable

seq. number

555 544Acked
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Flow Control (2)
• Sender uses the lower of the sliding 

window and flow control window 
(WIN) as the effective window size

.. 5 6 7 5 2 3 ..

LAS

WIN=3

Finished 3 ..Too high

seq. number

555 544Acked
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Flow Control (3)
• TCP-style example
– SEQ/ACK sliding window
– Flow control with WIN

– SEQ + length < ACK+WIN

– 4KB buffer at receiver
– Circular buffer of bytes
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Topic
• How to set the timeout for   

sending a retransmission
– Adapting to the network path

Lost?

Network
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Retransmissions
• With sliding window, the strategy 

for detecting loss is the timeout
– Set timer when a segment is sent
– Cancel timer when ack is received
– If timer fires, retransmit data as lost

Retransmit!
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Timeout Problem
• Timeout should be “just right”

– Too long wastes network capacity
– Too short leads to spurious resends
– But what is “just right”?

• Easy to set on a LAN (Link)
– Short, fixed, predictable RTT

• Hard on the Internet (Transport)
– Wide range, variable RTT



Example of RTTs
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Example of RTTs (2)
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Example of RTTs (3)
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Adaptive Timeout
• Keep smoothed estimates of the RTT (1) 

and variance in RTT (2)
– Update estimates with a moving average
1. SRTTN+1 = 0.9*SRTTN + 0.1*RTTN+1

2. SvarN+1 = 0.9*SvarN + 0.1*|RTTN+1– SRTTN+1|

• Set timeout to a multiple of estimates
– To estimate the upper RTT in practice
– TCP TimeoutN = SRTTN + 4*SvarN



Example of Adaptive Timeout
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Example of Adaptive Timeout (2)
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Adaptive Timeout (2)
• Simple to compute, does a good  

job of tracking actual RTT
– Little “headroom” to lower
– Yet very few early timeouts

• Turns out to be important for good 
performance and robustness


