
CSE 461 University of Washington 1

Topic
• How TCP works!
– The transport protocol used for

most content on the Internet

TCPTCPTCP

We love TCP/IP!

Network

We love TCP/IP!We love TCP/IP!We © TCP/IP!

CSE 461 University of Washington 2

TCP Features
• A reliable bytestream service »
• Based on connections
• Sliding window for reliability »

– With adaptive timeout
• Flow control for slow receivers

• Congestion control to allocate
network bandwidth

Reliable Bytestream
• Message boundaries not preserved from send() to recv()
– But reliable and ordered (receive bytes in same order as sent)

CSE 461 University of Washington 3

Four segments, each with 512 bytes of
data and carried in an IP packet

2048 bytes of data delivered
to app in a single recv() call

Sender Receiver

CSE 461 University of Washington 4

Reliable Bytestream (2)
• Bidirectional data transfer
– Control information (e.g., ACK)

piggybacks on data segments in
reverse direction

A B
data BàA

ACK AàB

ACK BàA

data AàB

CSE 461 University of Washington 5

TCP Header (1)
• Ports identify apps (socket API)
– 16-bit identifiers

CSE 461 University of Washington 6

TCP Header (2)
• SEQ/ACK used for sliding window
– Selective Repeat, with byte positions

CSE 461 University of Washington 7

TCP Sliding Window – Receiver
• Cumulative ACK tells next expected

byte sequence number (“LAS+1”)
• Optionally, selective ACKs (SACK)

give hints for receiver buffer state
– List up to 3 ranges of received bytes

ACK up to 100 and 200-299

CSE 461 University of Washington 8

TCP Sliding Window – Sender
• Uses an adaptive retransmission

timeout to resend data from LAS+1
• Uses heuristics to infer loss quickly

and resend to avoid timeouts
– “Three duplicate ACKs” treated as loss

ACK 100
ACK 100,
200-299

ACK 100,
200-399

ACK 100,
200-499

Sender decides 100-199 is lost

CSE 461 University of Washington 9

Topic
• Understanding congestion, a

“traffic jam” in the network
– Later we will learn how to control it

What’s the hold up?

Network

Nature of Congestion
• Routers/switches have internal buffering for contention

CSE 461 University of Washington 10

. . .

. . .

.

Input Buffer Output BufferFabric

Input Output

Nature of Congestion (2)
• Simplified view of per port output queues
– Typically FIFO (First In First Out), discard when full

CSE 461 University of Washington 11

Router

=

(FIFO) Queue
Queued
Packets

Router

CSE 461 University of Washington 12

Nature of Congestion (3)
• Queues help by absorbing bursts

when input > output rate
• But if input > output rate persistently,

queue will overflow
– This is congestion

• Congestion is a function of the traffic
patterns – can occur even if every
link have the same capacity

Effects of Congestion
• What happens to performance as we increase the load?

CSE 461 University of Washington 13

Effects of Congestion (2)
• What happens to performance as we increase the load?

CSE 461 University of Washington 14

CSE 461 University of Washington 15

Effects of Congestion (3)
• As offered load rises, congestion occurs

as queues begin to fill:
– Delay and loss rise sharply with more load
– Throughput falls below load (due to loss)
– Goodput may fall below throughput (due

to spurious retransmissions)

• None of the above is good!
– Want to operate network just

before the onset of congestion

CSE 461 University of Washington 16

Bandwidth Allocation
• Important task for network is to

allocate its capacity to senders
– Good allocation is efficient and fair

• Efficient means most capacity is
used but there is no congestion

• Fair means every sender gets a
reasonable share the network

CSE 461 University of Washington 17

Bandwidth Allocation (2)
• Key observation:
– In an effective solution, Transport and

Network layers must work together

• Network layer witnesses congestion
– Only it can provide direct feedback

• Transport layer causes congestion
– Only it can reduce offered load

CSE 461 University of Washington 18

Bandwidth Allocation (3)
• Why is it hard? (Just split equally!)
– Number of senders and their offered

load is constantly changing
– Senders may lack capacity in different

parts of the network
– Network is distributed; no single party

has an overall picture of its state

CSE 461 University of Washington 19

Bandwidth Allocation (4)
• Solution context:
– Senders adapt concurrently based on

their own view of the network
– Design this adaption so the network

usage as a whole is efficient and fair
– Adaption is continuous since offered

loads continue to change over time

CSE 461 University of Washington 20

Topics
• Nature of congestion
• Fair allocations
• AIMD control law
• TCP Congestion Control history
• ACK clocking
• TCP Slow-start
• TCP Fast Retransmit/Recovery
• Congestion Avoidance (ECN)

CSE 461 University of Washington 21

Topic
• What’s a “fair” bandwidth allocation?
– The max-min fair allocation

CSE 461 University of Washington 22

Recall
• We want a good bandwidth

allocation to be fair and efficient
– Now we learn what fair means

• Caveat: in practice, efficiency is
more important than fairness

CSE 461 University of Washington 23

Efficiency vs. Fairness
• Cannot always have both!
– Example network with traffic

AàB, BàC and AàC
– How much traffic can we carry?

A B C
1 1

CSE 461 University of Washington 24

Efficiency vs. Fairness (2)
• If we care about fairness:
– Give equal bandwidth to each flow
– AàB: ½ unit, BàC: ½, and AàC, ½
– Total traffic carried is 1 ½ units

A B C
1 1

CSE 461 University of Washington 25

Efficiency vs. Fairness (3)
• If we care about efficiency:
– Maximize total traffic in network
– AàB: 1 unit, BàC: 1, and AàC, 0
– Total traffic rises to 2 units!

A B C
1 1

CSE 461 University of Washington 26

The Slippery Notion of Fairness
• Why is “equal per flow” fair anyway?
– AàC uses more network resources

(two links) than AàB or BàC
– Host A sends two flows, B sends one

• Not productive to seek exact fairness
– More important to avoid starvation
– “Equal per flow” is good enough

CSE 461 University of Washington 27

Generalizing “Equal per Flow”
• Bottleneck for a flow of traffic is

the link that limits its bandwidth
– Where congestion occurs for the flow
– For AàC, link A–B is the bottleneck

A B C
1 10

Bottleneck

CSE 461 University of Washington 28

Generalizing “Equal per Flow” (2)
• Flows may have different bottlenecks
– For AàC, link A–B is the bottleneck
– For BàC, link B–C is the bottleneck
– Can no longer divide links equally …

A B C
1 10

CSE 461 University of Washington 29

Max-Min Fairness
• Intuitively, flows bottlenecked on a

link get an equal share of that link

• Max-min fair allocation is one that:
– Increasing the rate of one flow will

decrease the rate of a smaller flow
– This “maximizes the minimum” flow

CSE 461 University of Washington 30

Max-Min Fairness (2)
• To find it given a network, imagine

“pouring water into the network”
1. Start with all flows at rate 0
2. Increase the flows until there is a

new bottleneck in the network
3. Hold fixed the rate of the flows that

are bottlenecked
4. Go to step 2 for any remaining flows

Max-Min Example
• Example: network with 4 flows, links equal bandwidth
– What is the max-min fair allocation?

CSE 461 University of Washington 31

Max-Min Example (2)
• When rate=1/3, flows B, C, and D bottleneck R4—R5
– Fix B, C, and D, continue to increase A

CSE 461 University of Washington 32

Bottleneck

Max-Min Example (3)
• When rate=2/3, flow A bottlenecks R2—R3. Done.

CSE 461 University of Washington 33

Bottleneck

Bottleneck

Max-Min Example (4)
• End with A=2/3, B, C, D=1/3, and R2—R3, R4—R5 full
– Other links have extra capacity that can’t be used

• , linksxample: network with 4 flows, links equal
bandwidth
– What is the max-min fair allocation?

CSE 461 University of Washington 34

Adapting over Time
• Allocation changes as flows start and stop

CSE 461 University of Washington 35

Time

Adapting over Time (2)

CSE 461 University of Washington 36

Flow 1 slows when
Flow 2 starts

Flow 1 speeds up
when Flow 2 stops

Time

Flow 3 limit
is elsewhere

