
CSE 461 University of Washington 1

Topic
• Bandwidth allocation models
– Additive Increase Multiplicative

Decrease (AIMD) control law

AIMD!

Sawtooth

CSE 461 University of Washington 2

Recall
• Want to allocate capacity to senders

– Network layer provides feedback
– Transport layer adjusts offered load
– A good allocation is efficient and fair

• How should we perform the allocation?
– Several different possibilities …

CSE 461 University of Washington 3

Bandwidth Allocation Models
• Open loop versus closed loop
– Open: reserve bandwidth before use
– Closed: use feedback to adjust rates

• Host versus Network support
– Who is sets/enforces allocations?

• Window versus Rate based
– How is allocation expressed?

TCP is a closed loop, host-driven, and window-based

CSE 461 University of Washington 4

Bandwidth Allocation Models (2)
• We’ll look at closed-loop, host-driven,

and window-based too

• Network layer returns feedback on
current allocation to senders
– At least tells if there is congestion

• Transport layer adjusts sender’s
behavior via window in response
– How senders adapt is a control law

CSE 461 University of Washington 5

Additive Increase Multiplicative Decrease
• AIMD is a control law hosts can

use to reach a good allocation
– Hosts additively increase rate while

network is not congested
– Hosts multiplicatively decrease

rate when congestion occurs
– Used by TCP J

• Let’s explore the AIMD game …

CSE 461 University of Washington 6

AIMD Game
• Hosts 1 and 2 share a bottleneck
– But do not talk to each other directly

• Router provides binary feedback
– Tells hosts if network is congested

Rest of
Network

Bottleneck

Router

Host 1

Host 2

1

1
1

CSE 461 University of Washington 7

AIMD Game (2)
• Each point is a possible allocation

Host 1

Host 20 1

1

Fair

Efficient

Optimal
Allocation

Congested

CSE 461 University of Washington 8

AIMD Game (3)
• AI and MD move the allocation

Host 1

Host 20 1

1

Fair, y=x

Efficient, x+y=1

Optimal
Allocation

Congested

Multiplicative
Decrease

Additive
Increase

CSE 461 University of Washington 9

AIMD Game (4)
• Play the game!

Host 1

Host 20 1

1

Fair

Efficient

Congested

A starting
point

CSE 461 University of Washington 10

AIMD Game (5)
• Always converge to good allocation!

Host 1

Host 20 1

1

Fair

Efficient

Congested

A starting
point

CSE 461 University of Washington 11

AIMD Sawtooth
• Produces a “sawtooth” pattern

over time for rate of each host
– This is the TCP sawtooth (later)

Multiplicative
Decrease

Additive
Increase

Time

Host 1 or
2’s Rate

CSE 461 University of Washington 12

AIMD Properties
• Converges to an allocation that is

efficient and fair when hosts run it
– Holds for more general topologies

• Other increase/decrease control
laws do not! (Try MIAD, MIMD, MIAD)

• Requires only binary feedback
from the network

Feedback Signals
• Several possible signals, with different pros/cons
– We’ll look at classic TCP that uses packet loss as a signal

CSE 461 University of Washington 13

Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay Compound TCP

(Windows)
Hear about congestion early

Need to infer congestion
Router

indication
TCPs with Explicit

Congestion Notification
Hear about congestion early

Require router support

CSE 461 University of Washington 14

Topic
• The story of TCP congestion control
– Collapse, control, and diversification

What’s up?

Internet

CSE 461 University of Washington 15

Congestion Collapse in the 1980s
• Early TCP used a fixed size sliding

window (e.g., 8 packets)
– Initially fine for reliability

• But something strange happened
as the ARPANET grew
– Links stayed busy but transfer rates

fell by orders of magnitude!

CSE 461 University of Washington 16

Congestion Collapse (2)
• Queues became full, retransmissions

clogged the network, and goodput fell

Congestion
collapse

CSE 461 University of Washington 17

Van Jacobson (1950—)
• Widely credited with saving the Internet

from congestion collapse in the late 80s
– Introduced congestion control principles
– Practical solutions (TCP Tahoe/Reno)

• Much other pioneering work:
– Tools like traceroute, tcpdump, pathchar
– IP header compression, multicast tools

CSE 461 University of Washington 18

TCP Tahoe/Reno
• Avoid congestion collapse without

changing routers (or even receivers)

• Idea is to fix timeouts and introduce a
congestion window (cwnd) over the
sliding window to limit queues/loss

• TCP Tahoe/Reno implements AIMD by
adapting cwnd using packet loss as the
network feedback signal

CSE 461 University of Washington 19

TCP Tahoe/Reno (2)
• TCP behaviors we will study:
– ACK clocking
– Adaptive timeout (mean and variance)
– Slow-start
– Fast Retransmission
– Fast Recovery

• Together, they implement AIMD

TCP Timeline

CSE 461 University of Washington 20

1988

19901970 19801975 1985

Origins of “TCP”
(Cerf & Kahn, ’74)

3-way handshake
(Tomlinson, ‘75)

TCP Reno
(Jacobson, ‘90)

Congestion collapse
Observed, ‘86

TCP/IP “flag day”
(BSD Unix 4.2, ‘83)

TCP Tahoe
(Jacobson, ’88)

Pre-history Congestion control
. . .

TCP and IP
(RFC 791/793, ‘81)

CSE 461 University of Washington 21

Topic
• The self-clocking behavior of sliding

windows, and how it is used by TCP
– The “ACK clock”

Tick Tock!

CSE 461 University of Washington 22

Sliding Window ACK Clock
• Each in-order ACK advances the

sliding window and lets a new
segment enter the network
– ACKs “clock” data segments

Ack 1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11 Data

Benefit of ACK Clocking
• Consider what happens when sender injects a burst of

segments into the network

CSE 461 University of Washington 23

Fast link Fast linkSlow (bottleneck) link

Queue

Benefit of ACK Clocking (2)
• Segments are buffered and spread out on slow link

CSE 461 University of Washington 24

Fast link Fast linkSlow (bottleneck) link

Segments
“spread out”

Benefit of ACK Clocking (3)
• ACKs maintain the spread back to the original sender

CSE 461 University of Washington 25

Slow link
Acks maintain spread

Benefit of ACK Clocking (4)
• Sender clocks new segments with the spread
– Now sending at the bottleneck link without queuing!

CSE 461 University of Washington 26

Slow link

Segments spread Queue no longer builds

CSE 461 University of Washington 27

Benefit of ACK Clocking (4)
• Helps the network run with low

levels of loss and delay!

• The network has smoothed out
the burst of data segments

• ACK clock transfers this smooth
timing back to the sender

• Subsequent data segments are
not sent in bursts so do not
queue up in the network

CSE 461 University of Washington 28

TCP Uses ACK Clocking
• TCP uses a sliding window because

of the value of ACK clocking

• Sliding window controls how many
segments are inside the network
– Called the congestion window, or cwnd
– Rate is roughly cwnd/RTT

• TCP only sends small bursts of
segments to let the network keep
the traffic smooth

CSE 461 University of Washington 29

Topic
• How TCP implements AIMD, part 1
– “Slow start” is a component of the AI

portion of AIMD

Slow-start

CSE 461 University of Washington 30

Recall
• We want TCP to follow an AIMD

control law for a good allocation

• Sender uses a congestion window or
cwnd to set its rate (≈cwnd/RTT)

• Sender uses packet loss as the
network congestion signal

• Need TCP to work across a very
large range of rates and RTTs

CSE 461 University of Washington 31

TCP Startup Problem
• We want to quickly near the right

rate, cwndIDEAL, but it varies greatly
– Fixed sliding window doesn’t adapt

and is rough on the network (loss!)
– AI with small bursts adapts cwnd

gently to the network, but might take
a long time to become efficient

CSE 461 University of Washington 32

Slow-Start Solution
• Start by doubling cwnd every RTT
– Exponential growth (1, 2, 4, 8, 16, …)
– Start slow, quickly reach large values

AI

Fixed

TimeW
in

do
w

 (c
w

nd
)

Slow-start

CSE 461 University of Washington 33

Slow-Start Solution (2)
• Eventually packet loss will occur

when the network is congested
– Loss timeout tells us cwnd is too large
– Next time, switch to AI beforehand
– Slowly adapt cwnd near right value

• In terms of cwnd:
– Expect loss for cwndC ≈ 2BD+queue
– Use ssthresh = cwndC/2 to switch to AI

CSE 461 University of Washington 34

Slow-Start Solution (3)
• Combined behavior, after first time
– Most time spend near right value

AI

Fixed

Time

Window

ssthresh

cwndC

cwndIDEAL
AI phase

Slow-start

Slow-Start (Doubling) Timeline

CSE 461 University of Washington 35

Increment cwnd
by 1 packet for
each ACK

Additive Increase Timeline

CSE 461 University of Washington 36

Increment cwnd by
1 packet every cwnd
ACKs (or 1 RTT)

CSE 461 University of Washington 37

TCP Tahoe (Implementation)
• Initial slow-start (doubling) phase

– Start with cwnd = 1 (or small value)
– cwnd += 1 packet per ACK

• Later Additive Increase phase
– cwnd += 1/cwnd packets per ACK
– Roughly adds 1 packet per RTT

• Switching threshold (initially infinity)
– Switch to AI when cwnd > ssthresh
– Set ssthresh = cwnd/2 after loss
– Begin with slow-start after timeout

CSE 461 University of Washington 38

Timeout Misfortunes
• Why do a slow-start after timeout?
– Instead of MD cwnd (for AIMD)

• Timeouts are sufficiently long that
the ACK clock will have run down
– Slow-start ramps up the ACK clock

• We need to detect loss before a
timeout to get to full AIMD
– Done in TCP Reno (next time)

CSE 461 University of Washington 39

Topic
• How TCP implements AIMD, part 2
– “Fast retransmit” and “fast recovery”

are the MD portion of AIMD

AIMD sawtooth

CSE 461 University of Washington 40

Recall
• We want TCP to follow an AIMD control

law for a good allocation

• Sender uses a congestion window or
cwnd to set its rate (≈cwnd/RTT)

• Sender uses slow-start to ramp up the
ACK clock, followed by Additive Increase

• But after a timeout, sender slow-starts
again with cwnd=1 (as it no ACK clock)

CSE 461 University of Washington 41

Inferring Loss from ACKs
• TCP uses a cumulative ACK
– Carries highest in-order seq. number
– Normally a steady advance

• Duplicate ACKs give us hints about
what data hasn’t arrived
– Tell us some new data did arrive,

but it was not next segment
– Thus the next segment may be lost

CSE 461 University of Washington 42

Fast Retransmit
• Treat three duplicate ACKs as a loss
– Retransmit next expected segment
– Some repetition allows for reordering,

but still detects loss quickly

Ack 1 2 3 4 5 5 5 5 5 5

Fast Retransmit (2)

CSE 461 University of Washington 43

Ack 10
Ack 11
Ack 12
Ack 13

. . .

Ack 13

Ack 13
Ack 13

Data 14. . .
Ack 13

Ack 20
.

Data 20
Third duplicate
ACK, so send 14 Retransmission fills

in the hole at 14
ACK jumps after
loss is repaired

.

Data 14 was
lost earlier, but

got 15 to 20

CSE 461 University of Washington 44

Fast Retransmit (3)
• It can repair single segment loss

quickly, typically before a timeout

• However, we have quiet time at the
sender/receiver while waiting for the
ACK to jump

• And we still need to MD cwnd …

CSE 461 University of Washington 45

Inferring Non-Loss from ACKs
• Duplicate ACKs also give us hints

about what data has arrived
– Each new duplicate ACK means that

some new segment has arrived
– It will be the segments after the loss
– Thus advancing the sliding window

will not increase the number of
segments stored in the network

CSE 461 University of Washington 46

Fast Recovery
• First fast retransmit, and MD cwnd
• Then pretend further duplicate

ACKs are the expected ACKs
– Lets new segments be sent for ACKs
– Reconcile views when the ACK jumps

Ack 1 2 3 4 5 5 5 5 5 5

Fast Recovery (2)

CSE 461 University of Washington 47

Ack 12
Ack 13
Ack 13

Ack 13
Ack 13

Data 14Ack 13

Ack 20
.

Data 20
Third duplicate
ACK, so send 14

Data 14 was
lost earlier, but

got 15 to 20

Retransmission fills
in the hole at 14

Set ssthresh,
cwnd = cwnd/2

Data 21
Data 22

More ACKs advance
window; may send

segments before jump

Ack 13

Exit Fast Recovery

CSE 461 University of Washington 48

Fast Recovery (3)
• With fast retransmit, it repairs a single

segment loss quickly and keeps the ACK
clock running

• This allows us to realize AIMD
– No timeouts or slow-start after loss, just

continue with a smaller cwnd

• TCP Reno combines slow-start, fast
retransmit and fast recovery
– Multiplicative Decrease is ½

TCP Reno

CSE 461 University of Washington 49

MD of ½ , no slow-start

ACK clock
running

TCP sawtooth

CSE 461 University of Washington 50

TCP Reno, NewReno, and SACK
• Reno can repair one loss per RTT

– Multiple losses cause a timeout

• NewReno further refines ACK heuristics
– Repairs multiple losses without timeout

• SACK is a better idea
– Receiver sends ACK ranges so sender

can retransmit without guesswork

CSE 461 University of Washington 51

Topic
• How routers can help hosts to

avoid congestion
– Explicit Congestion Notification

!!

CSE 461 University of Washington 52

Congestion Avoidance vs. Control
• Classic TCP drives the network into

congestion and then recovers
– Needs to see loss to slow down

• Would be better to use the network
but avoid congestion altogether!
– Reduces loss and delay

• But how can we do this?

Feedback Signals
• Delay and router signals can let us avoid congestion

CSE 461 University of Washington 53

Signal Example Protocol Pros / Cons
Packet loss Classic TCP

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay Compound TCP

(Windows)
Hear about congestion early

Need to infer congestion
Router

indication
TCPs with Explicit

Congestion Notification
Hear about congestion early

Require router support

ECN (Explicit Congestion Notification)
• Router detects the onset of congestion via its queue
– When congested, it marks affected packets (IP header)

CSE 461 University of Washington 54

ECN (2)
• Marked packets arrive at receiver; treated as loss
– TCP receiver reliably informs TCP sender of the congestion

CSE 461 University of Washington 55

CSE 461 University of Washington 56

ECN (3)
• Advantages:
– Routers deliver clear signal to hosts
– Congestion is detected early, no loss
– No extra packets need to be sent

• Disadvantages:
– Routers and hosts must be upgraded

