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Topic
• Bandwidth allocation models
– Additive Increase Multiplicative 

Decrease (AIMD) control law

AIMD!

Sawtooth
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Recall
• Want to allocate capacity to senders

– Network layer provides feedback
– Transport layer adjusts offered load
– A good allocation is efficient and fair

• How should we perform the allocation?
– Several different possibilities …
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Bandwidth Allocation Models
• Open loop versus closed loop
– Open: reserve bandwidth before use
– Closed: use feedback to adjust rates

• Host versus Network support
– Who is sets/enforces allocations?

• Window versus Rate based
– How is allocation expressed?

TCP is a closed loop, host-driven, and window-based
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Bandwidth Allocation Models (2)
• We’ll look at closed-loop, host-driven, 

and window-based too

• Network layer returns feedback on 
current allocation to senders 
– At least tells if there is congestion

• Transport layer adjusts sender’s 
behavior via window in response
– How senders adapt is a control law
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Additive Increase Multiplicative Decrease 
• AIMD is a control law hosts can     

use to reach a good allocation
– Hosts additively increase rate while 

network is not congested
– Hosts multiplicatively decrease       

rate when congestion occurs
– Used by TCP J

• Let’s explore the AIMD game …
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AIMD Game
• Hosts 1 and 2 share a bottleneck
– But do not talk to each other directly

• Router provides binary feedback
– Tells hosts if network is congested

Rest of
Network

Bottleneck

Router

Host 1

Host 2

1

1
1
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AIMD Game (2)
• Each point is a possible allocation

Host 1

Host 20 1

1

Fair

Efficient

Optimal
Allocation

Congested
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AIMD Game (3)
• AI and MD move the allocation 

Host 1

Host 20 1

1

Fair, y=x

Efficient, x+y=1

Optimal
Allocation

Congested

Multiplicative
Decrease

Additive
Increase
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AIMD Game (4)
• Play the game!

Host 1

Host 20 1

1

Fair

Efficient

Congested

A starting 
point
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AIMD Game (5)
• Always converge to good allocation!

Host 1

Host 20 1

1

Fair

Efficient

Congested

A starting 
point
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AIMD Sawtooth
• Produces a “sawtooth” pattern  

over time for rate of each host
– This is the TCP sawtooth (later)

Multiplicative
Decrease

Additive
Increase

Time

Host 1 or 
2’s Rate
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AIMD Properties
• Converges to an allocation that is 

efficient and fair when hosts run it
– Holds for more general topologies

• Other increase/decrease control 
laws do not! (Try MIAD, MIMD, MIAD)

• Requires only binary feedback  
from the network



Feedback Signals
• Several possible signals, with different pros/cons
– We’ll look at classic TCP that uses packet loss as a signal
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Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay Compound TCP 

(Windows)
Hear about congestion early

Need to infer congestion
Router 

indication
TCPs with Explicit 

Congestion Notification
Hear about congestion early

Require router support
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Topic
• The story of TCP congestion control
– Collapse, control, and diversification

What’s up?

Internet
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Congestion Collapse in the 1980s
• Early TCP used a fixed size sliding 

window (e.g., 8 packets)
– Initially fine for reliability

• But something strange happened 
as the ARPANET grew
– Links stayed busy but transfer rates 

fell by orders of magnitude! 
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Congestion Collapse (2)
• Queues became full, retransmissions 

clogged the network, and goodput fell

Congestion
collapse
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Van Jacobson (1950—) 
• Widely credited with saving the Internet  

from congestion collapse in the late 80s
– Introduced congestion control principles
– Practical solutions (TCP Tahoe/Reno) 

• Much other pioneering work:
– Tools like traceroute, tcpdump, pathchar
– IP header compression, multicast tools
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TCP Tahoe/Reno
• Avoid congestion collapse without 

changing routers (or even receivers)

• Idea is to fix timeouts and introduce a 
congestion window (cwnd) over the 
sliding window to limit queues/loss

• TCP Tahoe/Reno implements AIMD by 
adapting cwnd using packet loss as the 
network feedback signal
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TCP Tahoe/Reno (2)
• TCP behaviors we will study:
– ACK clocking
– Adaptive timeout (mean and variance)
– Slow-start
– Fast Retransmission
– Fast Recovery

• Together, they implement AIMD



TCP Timeline
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1988

19901970 19801975 1985

Origins of “TCP”
(Cerf & Kahn, ’74)

3-way handshake
(Tomlinson, ‘75)

TCP Reno
(Jacobson, ‘90)

Congestion collapse 
Observed, ‘86

TCP/IP “flag day”
(BSD Unix 4.2, ‘83)

TCP Tahoe
(Jacobson, ’88)

Pre-history Congestion control
. . .

TCP and IP
(RFC 791/793, ‘81)
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Topic
• The self-clocking behavior of sliding 

windows, and how it is used by TCP
– The “ACK clock”

Tick Tock!
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Sliding Window ACK Clock
• Each in-order ACK advances the 

sliding window and lets a new 
segment enter the network
– ACKs “clock” data segments

Ack 1  2  3  4  5  6  7  8  9 10

20 19 18 17 16 15 14 13 12 11 Data



Benefit of ACK Clocking
• Consider what happens when sender injects a burst of 

segments into the network
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Fast link Fast linkSlow (bottleneck) link

Queue



Benefit of ACK Clocking (2)
• Segments are buffered and spread out on slow link
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Fast link Fast linkSlow (bottleneck) link

Segments 
“spread out”



Benefit of ACK Clocking (3)
• ACKs maintain the spread back to the original sender
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Slow link
Acks maintain spread



Benefit of ACK Clocking (4)
• Sender clocks new segments with the spread
– Now sending at the bottleneck link without queuing!
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Slow link

Segments spread Queue no longer builds
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Benefit of ACK Clocking (4)
• Helps the network run with low   

levels of loss and delay!

• The network has smoothed out        
the burst of data segments

• ACK clock transfers this smooth    
timing back to the sender

• Subsequent data segments are         
not sent in bursts so do not          
queue up in the network
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TCP Uses ACK Clocking
• TCP uses a sliding window because    

of the value of ACK clocking

• Sliding window controls how many 
segments are inside the network
– Called the congestion window, or cwnd
– Rate is roughly cwnd/RTT

• TCP only sends small bursts of 
segments to let the network keep    
the traffic smooth
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Topic
• How TCP implements AIMD, part 1
– “Slow start” is a component of the AI 

portion of AIMD 

Slow-start
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Recall
• We want TCP to follow an AIMD 

control law for a good allocation

• Sender uses a congestion window or 
cwnd to set its rate (≈cwnd/RTT)

• Sender uses packet loss as the 
network congestion signal

• Need TCP to work across a very     
large range of rates and RTTs
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TCP Startup Problem
• We want to quickly near the right 

rate, cwndIDEAL, but it varies greatly
– Fixed sliding window doesn’t adapt 

and is rough on the network (loss!) 
– AI with small bursts adapts cwnd

gently to the network, but might take 
a long time to become efficient
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Slow-Start Solution
• Start by doubling cwnd every RTT
– Exponential growth (1, 2, 4, 8, 16, …)
– Start slow, quickly reach large values

AI

Fixed

TimeW
in

do
w

 (c
w

nd
)

Slow-start
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Slow-Start Solution (2)
• Eventually packet loss will occur 

when the network is congested
– Loss timeout tells us cwnd is too large
– Next time, switch to AI beforehand
– Slowly adapt cwnd near right value

• In terms of cwnd:
– Expect loss for cwndC ≈ 2BD+queue
– Use ssthresh = cwndC/2 to switch to AI
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Slow-Start Solution (3)
• Combined behavior, after first time
– Most time spend near right value

AI

Fixed

Time

Window

ssthresh

cwndC

cwndIDEAL
AI phase

Slow-start



Slow-Start (Doubling) Timeline
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Increment cwnd
by 1 packet for 
each ACK



Additive Increase Timeline
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Increment cwnd by 
1 packet every cwnd
ACKs (or 1 RTT)
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TCP Tahoe (Implementation)
• Initial slow-start (doubling) phase

– Start with cwnd = 1 (or small value)
– cwnd += 1 packet per ACK

• Later Additive Increase phase
– cwnd += 1/cwnd packets per ACK
– Roughly adds 1 packet per RTT

• Switching threshold (initially infinity)
– Switch to AI when cwnd > ssthresh
– Set ssthresh = cwnd/2 after loss
– Begin with slow-start after timeout
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Timeout Misfortunes
• Why do a slow-start after timeout?
– Instead of MD cwnd (for AIMD)

• Timeouts are sufficiently long that 
the ACK clock will have run down
– Slow-start ramps up the ACK clock

• We need to detect loss before a 
timeout to get to full AIMD
– Done in TCP Reno (next time)
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Topic
• How TCP implements AIMD, part 2
– “Fast retransmit” and “fast recovery”           

are the MD portion of AIMD

AIMD sawtooth
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Recall
• We want TCP to follow an AIMD control 

law for a good allocation

• Sender uses a congestion window or 
cwnd to set its rate (≈cwnd/RTT)

• Sender uses slow-start to ramp up the  
ACK clock, followed by Additive Increase

• But after a timeout, sender slow-starts 
again with cwnd=1 (as it no ACK clock)
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Inferring Loss from ACKs
• TCP uses a cumulative ACK
– Carries highest in-order seq. number
– Normally a steady advance

• Duplicate ACKs give us hints about 
what data hasn’t arrived
– Tell us some new data did arrive,     

but it was not next segment
– Thus the next segment may be lost
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Fast Retransmit
• Treat three duplicate ACKs as a loss 
– Retransmit next expected segment
– Some repetition allows for reordering, 

but still detects loss quickly

Ack 1  2  3  4  5  5  5  5  5  5



Fast Retransmit (2)
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Ack 10
Ack 11
Ack 12
Ack 13

. . . 

Ack 13

Ack 13
Ack 13

Data 14. . . 
Ack 13

Ack 20
. . . . . . 

Data 20
Third duplicate 
ACK, so send 14 Retransmission fills 

in the hole at 14
ACK jumps after 
loss is repaired

. . . . . . 

Data 14 was 
lost earlier, but 

got 15 to 20
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Fast Retransmit (3)
• It can repair single segment loss 

quickly, typically before a timeout

• However, we have quiet time at the 
sender/receiver while waiting for the 
ACK to jump

• And we still need to MD cwnd …
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Inferring Non-Loss from ACKs
• Duplicate ACKs also give us hints 

about what data has arrived
– Each new duplicate ACK means that 

some new segment has arrived
– It will be the segments after the loss
– Thus advancing the sliding window 

will not increase the number of 
segments stored in the network
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Fast Recovery
• First fast retransmit, and MD cwnd
• Then pretend further duplicate 

ACKs are the expected ACKs
– Lets new segments be sent for ACKs 
– Reconcile views when the ACK jumps

Ack 1  2  3  4  5  5  5  5  5  5



Fast Recovery (2)
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Ack 12
Ack 13
Ack 13

Ack 13
Ack 13

Data 14Ack 13

Ack 20
. . . . . . 

Data 20
Third duplicate 
ACK, so send 14

Data 14 was 
lost earlier, but 

got 15 to 20

Retransmission fills 
in the hole at 14

Set ssthresh, 
cwnd =  cwnd/2 

Data 21
Data 22

More ACKs advance 
window; may send 

segments before jump

Ack 13

Exit Fast Recovery
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Fast Recovery (3)
• With fast retransmit, it repairs a single 

segment loss quickly and keeps the ACK
clock running

• This allows us to realize AIMD
– No timeouts or slow-start after loss, just 

continue with a smaller cwnd

• TCP Reno combines slow-start, fast 
retransmit and fast recovery
– Multiplicative Decrease is ½ 



TCP Reno
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MD of ½ , no slow-start

ACK clock 
running

TCP sawtooth
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TCP Reno, NewReno, and SACK
• Reno can repair one loss per RTT

– Multiple losses cause a timeout

• NewReno further refines ACK heuristics
– Repairs multiple losses without timeout

• SACK is a better idea
– Receiver sends ACK ranges so sender    

can retransmit without guesswork
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Topic
• How routers can help hosts to  

avoid congestion
– Explicit Congestion Notification

!!
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Congestion Avoidance vs. Control
• Classic TCP drives the network into 

congestion and then recovers
– Needs to see loss to slow down

• Would be better to use the network 
but avoid congestion altogether!
– Reduces loss and delay

• But how can we do this?



Feedback Signals
• Delay and router signals can let us avoid congestion
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Signal Example Protocol Pros / Cons
Packet loss Classic TCP

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay Compound TCP 

(Windows)
Hear about congestion early

Need to infer congestion
Router 

indication
TCPs with Explicit 

Congestion Notification
Hear about congestion early

Require router support



ECN (Explicit Congestion Notification)
• Router detects the onset of congestion via its queue
– When congested, it marks affected packets (IP header)
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ECN (2)
• Marked packets arrive at receiver; treated as loss
– TCP receiver reliably informs TCP sender of the congestion
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ECN (3)
• Advantages:
– Routers deliver clear signal to hosts
– Congestion is detected early, no loss
– No extra packets need to be sent

• Disadvantages:
– Routers and hosts must be upgraded


