
Transport Layer (TCP/UDP)



Where we are in the Course

•Moving on up to the Transport Layer!

CSE 461 University of Washington 2

Physical

Link

Network

Transport

Application



Recall

• Transport layer provides end-to-end connectivity    
across the network
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Recall (2)

• Segments carry application data across the network

• Segments are carried within packets within frames
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Transport Layer Services

•Provide different kinds of data delivery across the 
network to applications
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Bytestream Streams (TCP)



Comparison of Internet Transports

• TCP is full-featured, UDP is a glorified packet
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TCP (Streams) UDP (Datagrams)

Connections Datagrams

Bytes are delivered once, 
reliably, and in order

Messages may be lost, 
reordered, duplicated

Arbitrary length content Limited message size

Flow control matches 
sender to receiver

Can send regardless
of receiver state

Congestion control matches 
sender to network

Can send regardless
of network state



Socket API

• Simple abstraction to use the network
• The “network” API (really Transport service) used to write 

all Internet apps
• Part of all major OSes and languages; originally Berkeley 

(Unix) ~1983

• Supports both Internet transport services (Streams 
and Datagrams)
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Socket API (2)

• Sockets let apps attach to the local network at 
different ports
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Socket,
Port #1

Socket,
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Socket API (3)
• Same API used for Streams and Datagrams
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Primitive Meaning

SOCKET Create a new communication endpoint

BIND Associate a local address (port) with a socket

LISTEN Announce willingness to accept connections

ACCEPT Passively establish an incoming connection

CONNECT Actively attempt to establish a connection

SEND(TO) Send some data over the socket

RECEIVE(FROM) Receive some data over the socket

CLOSE Release the socket

Only needed 
for Streams

To/From for 
Datagrams



Ports

•Application process is identified by the tuple IP 
address, transport protocol, and port
• Ports are 16-bit integers representing local “mailboxes” 

that a process leases

• Servers often bind to “well-known ports”
• <1024, require administrative privileges

•Clients often assigned “ephemeral” ports
• Chosen by OS, used temporarily 
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Some Well-Known Ports
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Port Protocol Use

20, 21 FTP File transfer

22 SSH Remote login, replacement for Telnet

25 SMTP Email

80 HTTP World Wide Web

110 POP-3 Remote email access

143 IMAP Remote email access

443 HTTPS Secure Web (HTTP over SSL/TLS)

543 RTSP Media player control

631 IPP Printer sharing



Topics

• Service models
• Socket API and ports

• Datagrams, Streams

• User Datagram Protocol (UDP)

• Connections (TCP)

• Sliding Window (TCP)

• Flow control (TCP)

• Retransmission timers (TCP)

• Congestion control (TCP)

CSE 461 University of Washington 12



UDP



User Datagram Protocol (UDP)

•Used by apps that don’t want reliability or 
bytestreams
• Like what?
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User Datagram Protocol (UDP)

•Used by apps that don’t want reliability or 
bytestreams
• Voice-over-IP 
• DNS, RPC 
• DHCP

(If application wants reliability and messages then it 
has work to do!)
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Datagram Sockets
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Client (host 1) Server (host 2)Time

request

reply



Datagram Sockets (2)
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Client (host 1) Server (host 2)Time

1: socket
2: bind

1: socket

6: sendto

3: recvfrom*
4: sendto

5: recvfrom*

7: close 7: close

*= call blocks

request

reply



UDP Buffering
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UDP Header

•Uses ports to identify sending and receiving 
application processes

•Datagram length up to 64K

•Checksum (16 bits) for reliability
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UDP Header (2)

•Optional checksum covers UDP segment and IP 
pseudoheader
• Checks key IP fields (addresses)
• Value of zero means “no checksum”
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TCP



TCP

• TCP Consists of 3 primary phases:
• Connection Establishment (Setup)
• Sliding Windows/Flow Control
• Connection Release (Teardown)



Connection Establishment

•Both sender and receiver must be ready before we 
start the transfer of data
• Need to agree on a set of parameters
• e.g., the Maximum Segment Size (MSS)

• This is signaling
• It sets up state at the endpoints
• Like “dialing” for a telephone call
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Three-Way Handshake
• Used in TCP; opens connection for 

data in both directions

• Each side probes the other with a 
fresh Initial Sequence Number (ISN)
• Sends on a SYNchronize segment

• Echo on an ACKnowledge segment

• Chosen to be robust even against 
delayed duplicates

Active party
(client)

Passive party
(server)
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Three-Way Handshake (2)

• Three steps:
• Client sends SYN(x)
• Server replies with SYN(y)ACK(x+1)
• Client replies with ACK(y+1)
• SYNs are retransmitted if lost

• Sequence and ack numbers carried 
on further segments

1

2

3

Active party
(client)

Passive party
(server)

Time
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Three-Way Handshake (3)

• Suppose delayed, duplicate 
copies of the SYN and ACK arrive 
at the server!
• Improbable, but anyhow …

Active party
(client)

Passive party
(server)
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Three-Way Handshake (4)

• Suppose delayed, duplicate 
copies of the SYN and ACK arrive 
at the server!
• Improbable, but anyhow …

•Connection will be cleanly 
rejected on both sides 

Active party
(client)

Passive party
(server)

X

X
REJECT

REJECT



TCP Connection State Machine

•Captures the states ([]) and transitions (->)
• A/B means event A triggers the transition, with action B

Both parties 
run instances 
of this state 

machine



TCP Connections (2)

• Follow the path of the client: 



TCP Connections (3)

• And the path of the server: 



TCP Connections (4)

• Again, with states …
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SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

1

2

3
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Time

CLOSEDCLOSED



TCP Connections (5)

• Finite state machines are a useful tool to specify 
and check the handling of all cases that may occur

• TCP allows for simultaneous open
• i.e., both sides open instead of the client-server pattern
• Try at home to confirm it works
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Connection Release

•Orderly release by both parties when done
• Delivers all pending data and “hangs up”
• Cleans up state in sender and receiver

•Key problem is to provide reliability while releasing
• TCP uses a “symmetric” close in which both sides 

shutdown independently
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TCP Connection Release

• Two steps:
• Active sends FIN(x), passive ACKs
• Passive sends FIN(y), active ACKs
• FINs are retransmitted if lost

• Each FIN/ACK closes one direction 
of data transfer

Active 
party

Passive 
party
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TCP Connection Release (2)

• Two steps:
• Active sends FIN(x), passive ACKs
• Passive sends FIN(y), active ACKs
• FINs are retransmitted if lost

• Each FIN/ACK closes one direction 
of data transfer

Active 
party

Passive 
party

1

2



TCP Connection State Machine
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Both parties 
run instances 
of this state 

machine

•Captures the 
states ([]) and 
transitions (->)
• A/B means 

event A triggers 
the transition, 
with action B



TCP Release

• Follow the active party
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TCP Release (2)

• Follow the passive party
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TCP Release (3)

•Again, with states …
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1

2

CLOSED

Active party Passive party

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2

TIME_WAIT

CLOSED

ESTABLISHED

(timeout)

ESTABLISHED



TIME_WAIT State

•Wait a long time after sending all segments and 
before completing the close
• Two times the maximum segment lifetime of 60 seconds

•Why?
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TIME_WAIT State

•Wait a long time after sending all segments and 
before completing the close
• Two times the maximum segment lifetime of 60 seconds

•Why?
• ACK might have been lost, in which case FIN will be resent 

for an orderly close
• Could otherwise interfere with a subsequent connection
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Flow Control



Recall

•ARQ with one message at a time is Stop-and-Wait 
(normal case below)
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Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1



Limitation of Stop-and-Wait

• It allows only a single message to be outstanding 
from the sender:
• Fine for LAN (only one frame fits in network anyhow)
• Not efficient for network paths with BD >> 1 packet
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Limitation of Stop-and-Wait (2)

• Example: R=1 Mbps, D = 50 ms, 10kb packets 
• RTT (Round Trip Time) = 2D = 100 ms
• How many packets/sec? 

• What if R=10 Mbps?
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Sliding Window

•Generalization of stop-and-wait
• Allows W packets to be outstanding
• Can send W packets per RTT (=2D)

• Pipelining improves performance 
• Need W=2BD to fill network path
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Sliding Window (2)

• What W will use the network capacity?
• Assume 10kb packets

• Ex: R=1 Mbps, D = 50 ms 

• Ex: What if R=10 Mbps?
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Sliding Window (3)

• Ex: R=1 Mbps, D = 50 ms 
• 2BD = 106 b/sec x 100. 10-3 sec = 100 kbit
• W = 2BD = 10 packets of 1250 bytes

• Ex: What if R=10 Mbps?
• 2BD = 1000 kbit
• W = 2BD = 100 packets of 1250 bytes
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Sliding Window Protocol

•Many variations, depending on how buffers, 
acknowledgements, and retransmissions are handled

•Go-Back-N
• Simplest version, can be inefficient

• Selective Repeat
• More complex, better performance
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Sliding Window – Sender 

• Sender buffers up to W segments until they are 
acknowledged
• LFS=LAST FRAME SENT, LAR=LAST ACK REC’D
• Sends while LFS – LAR < W 
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Sliding Window – Sender (2) 

• Transport accepts another segment of data from 
the Application ...
• Transport sends it (as LFS–LAR < 5)
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Sliding Window – Sender (3) 

•Next higher ACK arrives from peer…
• Window advances, buffer is freed 
• LFS–LAR < 5 (can send one more) 
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Sliding Window – Go-Back-N

•Receiver keeps only a single packet buffer for the 
next segment
• State variable, LAS = LAST ACK SENT

•On receive:
• If seq. number is LAS+1, accept and pass it to app, update 

LAS, send ACK
• Otherwise discard (as out of order)
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Sliding Window – Selective Repeat

• Receiver passes data to app in order, and buffers out-of-
order segments to reduce retransmissions

• ACK conveys highest in-order segment, plus hints about out-
of-order segments

• TCP uses a selective repeat design; we’ll see the details later
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Sliding Window – Selective Repeat (2)

•Buffers W segments, keeps state variable LAS = LAST

ACK SENT

•On receive:
• Buffer segments [LAS+1, LAS+W] 
• Send app in-order segments from LAS+1, and update LAS
• Send ACK for LAS regardless
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5

Sliding Window – Selective Retransmission (3) 

•Keep normal sliding window

• If receive something out of order
• Send last unacked packet again!
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5

Sliding Window – Selective Retransmission (4) 

•Keep normal sliding window

• If correct packet arrives, move window and LAR, 
send more messages
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Sliding Window – Retransmissions

•Go-Back-N uses a single timer to detect losses
• On timeout, resends buffered packets  starting at LAR+1

• Selective Repeat uses a timer per unacked segment 
to detect losses
• On timeout for segment, resend it
• Hope to resend fewer segments
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Sequence Numbers

•Need more than 0/1 for Stop-and-Wait …
•But how many?

• For Selective Repeat, need W numbers for packets, plus 
W for acks of earlier packets
• 2W seq. numbers
• Fewer for Go-Back-N (W+1)

•Typically implement seq. number with an N-bit 
counter that wraps around at 2N—1 
• E.g., N=8:   …, 253, 254, 255, 0, 1, 2, 3, …
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Sequence Time Plot
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Sequence Time Plot (2)
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Sequence Time Plot (3)
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ACK Clocking



Sliding Window ACK Clock

• Each in-order ACK advances the sliding window and 
lets a new segment enter the network
• ACKs “clock” data segments
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Benefit of ACK Clocking

•Consider what happens when sender injects a burst 
of segments into the network

CSE 461 University of Washington 65

Fast link Fast linkSlow (bottleneck) link

Queue



Benefit of ACK Clocking (2)

• Segments are buffered and spread out on slow link
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Fast link Fast linkSlow (bottleneck) link

Segments 
“spread out”



Benefit of ACK Clocking (3)

• ACKs maintain the spread back to the original sender
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Slow link

Acks maintain spread



Benefit of ACK Clocking (4)

• Sender clocks new segments with the spread
• Now sending at the bottleneck link without queuing!
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Slow link

Segments spread Queue no longer builds



Benefit of ACK Clocking (4)

•Helps run with low levels of loss and delay!

• The network smooths out the burst of data segments

• ACK clock transfers this smooth timing back to sender

• Subsequent data segments are not sent in bursts so 
do not queue up in the network
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TCP Uses ACK Clocking

• TCP uses a sliding window because of the value of 
ACK clocking

• Sliding window controls how many segments are 
inside the network

• TCP only sends small bursts of segments to let the 
network keep the traffic smooth
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Problem

• Sliding window has pipelining to keep network busy
• What if the receiver is overloaded?
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Sliding Window – Receiver 

•Consider receiver with W buffers
• LAS=LAST ACK SENT, app pulls in-order data from buffer with 

recv() call
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Sliding Window – Receiver (2) 

• Suppose the next two segments arrive but app does 
not call recv()
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Sliding Window – Receiver (3) 

• Suppose the next two segments arrive but app does 
not call recv()
• LAS rises, but we can’t slide window!
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Sliding Window – Receiver (4) 

• Further segments arrive (in order) we fill buffer 
• Must drop segments until app recvs!
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Sliding Window – Receiver (5) 

•App recv() takes two segments
• Window slides (phew)
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Flow Control

•Avoid loss at receiver by telling sender the available 
buffer space
• WIN=#Acceptable, not W (from LAS)
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Flow Control (2)

• Sender uses lower of the sliding window and flow 
control window (WIN) as the effective window size
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Flow Control (3)

• TCP-style example
• SEQ/ACK sliding window
• Flow control with WIN

• SEQ + length < ACK+WIN

• 4KB buffer at receiver
• Circular buffer of bytes



Topic

•How to set the timeout for sending a retransmission
• Adapting to the network path
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Lost?

Network



Retransmissions

•With sliding window, detecting loss with timeout
• Set timer when a segment is sent
• Cancel timer when ack is received
• If timer fires, retransmit data as lost
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Retransmit!



Timeout Problem

• Timeout should be “just right”
• Too long wastes network capacity
• Too short leads to spurious resends
• But what is “just right”?

• Easy to set on a LAN (Link)
• Short, fixed, predictable RTT

•Hard on the Internet (Transport)
• Wide range, variable RTT
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Example of RTTs
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Example of RTTs (2)
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Example of RTTs (3)
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Adaptive Timeout

• Smoothed estimates of the RTT (1) and variance in RTT (2)
• Update estimates with a moving average

1. SRTTN+1 = 0.9*SRTTN + 0.1*RTTN+1

2. SvarN+1 = 0.9*SvarN + 0.1*|RTTN+1– SRTTN+1|

• Set timeout to a multiple of estimates
• To estimate the upper RTT in practice

• TCP TimeoutN = SRTTN + 4*SvarN
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Example of Adaptive Timeout
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Example of Adaptive Timeout (2)
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Adaptive Timeout (2)

• Simple to compute, does a good job of tracking 
actual RTT
• Little “headroom” to lower
• Yet very few early timeouts

• Turns out to be important for good performance 
and robustness
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Congestion



TCP to date:

•We can set up a connection (connection 
establishment)

• Tear down a connection (connection release)

•Keep the sending and receiving buffers from 
overflowing (flow control)

What’s missing?



Network Congestion

•A “traffic jam” in the network
• Later we will learn how to control it
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What’s the hold up?

Networ
k



Congestion Collapse in the 1980s

• Early TCP used fixed size window (e.g., 8 packets)
• Initially fine for reliability

•But something happened as the ARPANET grew
• Links stayed busy but transfer rates fell by orders of 

magnitude! 
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Nature of Congestion

•Routers/switches have internal buffering 
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Nature of Congestion (2)

• Simplified view of per port output queues
• Typically FIFO (First In First Out), discard when full
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Nature of Congestion (3)

•Queues help by absorbing bursts when input > 
output rate

•But if input > output rate persistently, queue will 
overflow
• This is congestion

•Congestion is a function of the traffic patterns – can 
occur even if every link has the same capacity
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Effects of Congestion

•What happens to performance as we increase load?



Effects of Congestion (2)

•What happens to performance as we increase load?



Effects of Congestion (3)

•As offered load rises, congestion occurs as queues 
begin to fill:
• Delay and loss rise sharply with more load
• Throughput falls below load (due to loss)
• Goodput may fall below throughput (due to spurious 

retransmissions)

•None of the above is good!
• Want network performance just before congestion
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Van Jacobson (1950—) 

•Widely credited with saving the 
Internet from congestion collapse in 
the late 80s
• Introduced congestion control 

principles
• Practical solutions (TCP Tahoe/Reno) 

•Much other pioneering work:
• Tools like traceroute, tcpdump, 

pathchar
• IP header compression, multicast tools
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TCP Tahoe/Reno

• TCP extensions and features we will study:
• AIMD
• Fair Queuing
• Slow-start
• Fast Retransmission
• Fast Recovery
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TCP Timeline
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19901970 19801975 1985

Origins of “TCP”
(Cerf & Kahn, ’74)
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TCP/IP “flag day”
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TCP Timeline (2)
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Bandwidth Allocation

• Important task for network is to allocate its capacity 
to senders
• Good allocation is both efficient and fair

• Efficient means most capacity is used but there is 
no congestion

• Fair means every sender gets a reasonable share 
the network
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Bandwidth Allocation (2)

•Key observation:
• In an effective solution, Transport and Network layers 

must work together

•Network layer witnesses congestion
• Only it can provide direct feedback

• Transport layer causes congestion
• Only it can reduce offered load
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Bandwidth Allocation (3)

•Why is it hard? (Just split equally!)
• Number of senders and their offered load changes
• Senders may lack capacity in different parts of network
• Network is distributed; no single party has an overall 

picture of its state
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Bandwidth Allocation (4)

• Solution context:
• Senders adapt concurrently based on their own view of 

the network
• Design this adaption so the network usage as a whole is 

efficient and fair
• Adaption is continuous since offered loads continue to 

change over time
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Fair Allocations



Fair Allocation

• What’s a “fair” bandwidth allocation?
• The max-min fair allocation
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Recall

•We want a good bandwidth allocation to be both 
fair and efficient
• Now we learn what fair means

•Caveat: in practice, efficiency is more important 
than fairness
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Efficiency vs. Fairness

•Cannot always have both!
• Example network with traffic:

• A→B, B→C and A→ C 

• How much traffic can we carry?
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Efficiency vs. Fairness (2)

• If we care about fairness:
• Give equal bandwidth to each flow
• A→B: ½ unit, B→C: ½, and A→C, ½ 
• Total traffic carried is 1 ½ units
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Efficiency vs. Fairness (3)

• If we care about efficiency:
• Maximize total traffic in network
• A→B: 1 unit, B→C: 1, and A→C, 0 
• Total traffic rises to 2 units!
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The Slippery Notion of Fairness

•Why is “equal per flow” fair anyway?
• A→C uses more network resources than A→B or B→C
• Host A sends two flows, B sends one

•Not productive to seek exact fairness
• More important to avoid starvation

• A node that cannot use any bandwidth

• “Equal per flow” is good enough
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Generalizing “Equal per Flow”

•Bottleneck for a flow of traffic is  the link that limits 
its bandwidth
• Where congestion occurs for the flow
• For A→C, link A–B is the bottleneck 
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Generalizing “Equal per Flow” (2)

• Flows may have different bottlenecks
• For A→C, link A–B is the bottleneck
• For B→C, link B–C is the bottleneck
• Can no longer divide links equally …
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Max-Min Fairness

• Intuitively, flows bottlenecked on a link get an equal 
share of that link

•Max-min fair allocation is one that:
• Increasing the rate of one flow will decrease the rate of a 

smaller flow
• This “maximizes the minimum” flow
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Max-Min Fairness (2)

• To find it given a network, imagine “pouring water 
into the network”

1. Start with all flows at rate 0
2. Increase the flows until there is a new bottleneck in 

the network
3. Hold fixed the rate of the flows that are bottlenecked
4. Go to step 2 for any remaining flows
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Max-Min Example

• Example: network with 4 flows, link bandwidth = 1
• What is the max-min fair allocation? 
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Max-Min Example (2)

•When rate=1/3, flows B, C, and D bottleneck R4—
R5 
• Fix B, C, and D, continue to increase A 
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Max-Min Example (3)

•When rate=2/3, flow A bottlenecks R2—R3. Done. 
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Max-Min Example (4)

• End with A=2/3, B, C, D=1/3, and R2/R3, R4/R5 full 
• Other links have extra capacity that can’t be used

•
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Adapting over Time

•Allocation changes as flows start and stop
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Adapting over Time (2)
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Bandwidth Allocation



Recall

•Want to allocate capacity to senders
• Network layer provides feedback
• Transport layer adjusts offered load
• A good allocation is efficient and fair

•How should we perform the allocation?
• Several different possibilities …
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Bandwidth Allocation Models

•Open loop versus closed loop
• Open: reserve bandwidth before use
• Closed: use feedback to adjust rates

•Host versus Network support
• Who is sets/enforces allocations?

•Window versus Rate based
• How is allocation expressed?
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Bandwidth Allocation Models (2)

•We’ll look at closed-loop, host-driven, and window-
based too
•Network layer returns feedback on current 

allocation to senders 
• For TCP signal is “a packet dropped”

• Transport layer adjusts sender’s behavior via 
window in response
• How senders adapt is a control law
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Additive Increase Multiplicative Decrease 

•AIMD is a control law hosts can use to reach a good 
allocation
• Hosts additively increase rate while network not congested
• Hosts multiplicatively decrease rate when congested
• Used by TCP

• Let’s explore the AIMD game …
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AIMD Game

•Hosts 1 and 2 share a bottleneck
• But do not talk to each other directly

•Router provides binary feedback
• Tells hosts if network is congested
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AIMD Game (2)

• Each point is a possible allocation
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AIMD Game (3)

•AI and MD move the allocation 
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AIMD Game (4)

•Play the game!
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AIMD Game (5)

•Always converge to good allocation!
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AIMD Sawtooth

•Produces a “sawtooth” pattern  over time for rate 
of each host
• This is the TCP sawtooth (later)
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AIMD Properties

•Converges to an allocation that is efficient and fair 
when hosts run it
• Holds for more general topologies

•Other increase/decrease control laws do not! (Try 
MIAD, MIMD, MIAD)

•Requires only binary feedback from the network
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Feedback Signals

• Several possible signals, with different pros/cons
• We’ll look at classic TCP that uses packet loss as a signal
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Signal Example Protocol Pros / Cons

Packet loss TCP NewReno

Cubic TCP (Linux)

Hard to get wrong

Hear about congestion late

Packet delay TCP BBR (Youtube) Hear about congestion early

Need to infer congestion

Router 

indication

TCPs with Explicit 

Congestion Notification

Hear about congestion early

Require router support



Slow Start (TCP Additive 
Increase)



Practical AIMD

•We want TCP to follow an AIMD control law for a 
good allocation

• Sender uses a congestion window or cwnd to set its 
rate (≈cwnd/RTT)

• Sender uses loss as network congestion signal

•Need TCP to work across a very large range of rates 
and RTTs
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TCP Startup Problem

•We want to quickly near the right rate, cwndIDEAL, but 
it varies greatly
• Fixed sliding window doesn’t adapt and is rough on the 

network (loss!) 
• Additive Increase with small bursts adapts cwnd gently to 

the network, but might take a long time to become 
efficient
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Slow-Start Solution

• Start by doubling cwnd every RTT
• Exponential growth (1, 2, 4, 8, 16, …)
• Start slow, quickly reach large values
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Slow-Start Solution (2)

• Eventually packet loss will occur when the network 
is congested
• Loss timeout tells us cwnd is too large
• Next time, switch to AI beforehand
• Slowly adapt cwnd near right value

• In terms of cwnd:
• Expect loss for cwndC ≈ 2BD+queue
• Use ssthresh = cwndC/2 to switch to AI
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Slow-Start Solution (3)

•Combined behavior, after first time
• Most time spend near right value
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Slow-Start (Doubling) Timeline
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Additive Increase Timeline
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TCP Tahoe (Implementation)

• Initial slow-start (doubling) phase
• Start with cwnd = 1 (or small value)
• cwnd += 1 packet per ACK

•Later Additive Increase phase
• cwnd += 1/cwnd packets per ACK

• Roughly adds 1 packet per RTT

•Switching threshold (initially infinity)
• Switch to AI when cwnd > ssthresh
• Set ssthresh = cwnd/2 after loss
• Begin with slow-start after timeout
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Timeout Misfortunes

•Why do a slow-start after timeout?
• Instead of MD cwnd (for AIMD)

• Timeouts are sufficiently long that the ACK clock will 
have run down
• Slow-start ramps up the ACK clock

•We need to detect loss before a timeout to get to 
full AIMD
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Fast Recovery 
(TCP Multiplicative Decrease)



Practical AIMD (2)

•We want TCP to follow an AIMD control law for a 
good allocation

• Sender uses a congestion window or cwnd to set its 
rate (≈cwnd/RTT)

• Sender uses slow-start to ramp up the ACK clock, 
followed by Additive Increase

•But after a timeout, sender slow-starts again with 
cwnd=1 (as it no ACK clock)
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Inferring Loss from ACKs

• TCP uses a cumulative ACK
• Carries highest in-order seq. number
• Normally a steady advance

•Duplicate ACKs give us hints about what data hasn’t 
arrived
• Tell us some new data did arrive, but it was not next 

segment
• Thus the next segment may be lost
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Fast Retransmit

• Treat three duplicate ACKs as a loss 
• Retransmit next expected segment
• Some repetition allows for reordering, but still detects 

loss quickly
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Fast Retransmit (2)
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Fast Retransmit (3)

• It can repair single segment loss quickly, typically 
before a timeout

•However, we have quiet time at the sender/receiver 
while waiting for the ACK to jump

•And we still need to MD cwnd …
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Inferring Non-Loss from ACKs

•Duplicate ACKs also give us hints about what data 
has arrived
• Each new duplicate ACK means that some new segment 

has arrived
• It will be the segments after the loss
• Thus advancing the sliding window will not increase the 

number of segments stored in the network

CSE 461 University of Washington 154



Fast Recovery

• First fast retransmit, and MD cwnd

• Then pretend further duplicate ACKs are the 
expected ACKs
• Lets new segments be sent for ACKs 
• Reconcile views when the ACK jumps
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Fast Recovery (2)
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Fast Recovery (3)

•With fast retransmit, it repairs a single segment loss 
quickly and keeps the ACK clock running

• This allows us to realize AIMD
• No timeouts or slow-start after loss, just continue with a 

smaller cwnd

• TCP Reno combines slow-start, fast retransmit and 
fast recovery
• Multiplicative Decrease is ½ 
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TCP Reno
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TCP Reno, NewReno, and SACK

•Reno can repair one loss per RTT
• Multiple losses cause a timeout

•NewReno further refines ACK heuristics
• Repairs multiple losses without timeout

• Selective ACK (SACK) is a better idea
• Receiver sends ACK ranges so sender can retransmit 

without guesswork
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TCP CUBIC

• Standard TCP Stack in Linux (> 2.6.19) and Windows (> 
10.1709)

• Internet grows to have more long-distance, high 
bandwidth connections

• Seeks to resolve two key problems with “standard” TCP:

● Flows with lower RTT’s “grow” faster than those with 
higher RTTs

● Flows grow too “slowly” (linearly) after congestion
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TCP CUBIC

1) At the time of experiencing congestion event the window size for that instant will 
be recorded as Wmax or the maximum window size.

2) The Wmax value will be set as the inflection point of the cubic function that will 
govern the growth of the congestion window.

3) The transmission will then be restarted with a smaller window value (20%) and, if 
no congestion is experienced, this value will increase according to the concave 
portion of the cubic function (not depending on received ACKs for cadence).

4) As the window approaches Wmax the increments will slow down.

5) Once the tipping point has been reached, i.e. Wmax, the value of the window will 
continue to increase discreetly.

6) Finally, if the network is still not experiencing any congestion, the window size will 
continue to increase according to the convex portion of the function.
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TCP CUBIC
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TCP CUBIC vs Everyone
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TCP BBR

• Bottleneck Bandwidth and Round-trip propagation time 

• Developed at Google in 2016 primarily for YouTube traffic

• Attempting to solve “bufflerbloat” problem

• “Model-based” (Vegas) rather than “Loss-based” (CUBIC)

● Measure RTT, latency, bottleneck bandwidth

● Use this to predict window size
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Bufferbloat

• Larger queues are better than smaller queues right?
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Bufferbloat

• Given TCP loss semantics…

• Performance can decrease 
buffer size is increased

• Consider a full buffer:

● New packets arrive and 
are dropped (‘tail drop’)

● SACK doesn’t arrive until 
entire buffer sent
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TCP BBR

• BBR Has 4 Distinct Phases

1) Startup: Basically identical to Cubic. Expontentially grow until 
RTTs start to increase (instead of dropped packet). Set cwnd. 

2) Drain: Startup filled a queue.  Temporarily reduce sending 
rate (known as “pacing gain”)

3) Probe Bandwidth: Increase sending rate to see if there’s more 
capacity. If not, drain again.

4) Probe RTT: Reduce rate dramatically (4 packets) to measure 
RTT. Use this as our baseline for above. 
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TCP BBR vs Everyone
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Network-Side Congestion 
Control



Congestion Avoidance vs. Control

•Classic TCP drives the network into congestion and 
then recovers
• Needs to see loss to slow down

•Would be better to use the network but avoid 
congestion altogether!
• Reduces loss and delay

•But how can we do this?
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Feedback Signals

•Delay and router signals can let us avoid congestion
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Signal Example Protocol Pros / Cons

Packet loss Classic TCP

Cubic TCP (Linux)

Hard to get wrong

Hear about congestion late

Packet delay TCP BBR (Youtube) Hear about congestion early

Need to infer congestion

Router 

indication

TCPs with Explicit 

Congestion Notification

Hear about congestion early

Require router support



ECN (Explicit Congestion Notification)

•Router detects the onset of congestion via its queue
• When congested, it marks affected packets (IP header)
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ECN (2)

•Marked packets arrive at receiver; treated as loss
• TCP receiver reliably informs TCP sender of the congestion
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ECN (3)

•Advantages:
• Routers deliver clear signal to hosts
• Congestion is detected early, no loss
• No extra packets need to be sent

•Disadvantages:
• Routers and hosts must be upgraded (currently 1%)
• More work at router
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Random Early Detection (RED)

• Jacobson (again!) and Floyd
•Alternative idea: instead of marking packets, drop

• We know they’re using TCP, make use of that fact
• Signals congestion to sender

• But without adding headers or doing packet inspection
•Drop at random, depending on queue size

• If queue empty, accept packet always
• If queue full, always drop
• As queue approaches full, increase likelihood of packet drop

• Example: 1 queue slot left, 10 packets expected, 90% chance of drop



RED (Random Early Detection)

•Router detects the onset of congestion via its queue
• Prior to congestion, drop a packet to signal
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RED (Random Early Detection)

• Sender enters MD, slows packet flow
• We shed load, everyone is happy 
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