
Applications!



Where we are in the Course

• Application layer protocols are often part of “app”
• But don’t need a GUI, e.g., DNS

CSE 461 University of Washington 2

Physical

Link

Network

Transport

Application



Recall

• Application layer messages are often split over 
multiple packets

• Or may be aggregated in a packet …

CSE 461 University of Washington 3

802.11 IP TCP HTTP

802.11 IP TCP HTTP

802.11 IP TCP HTTP

HTTP



Application Communication Needs

• Vary widely; must build on Transport services

CSE 461 University of Washington 4

UDP

DNS

TCP

Series of variable 
length, reliable 
request/reply 

exchanges

Web

UDP

Real-time 
(unreliable) 

stream delivery

Skype

Short, reliable 
request/reply 

exchanges

Message 
reliability!



OSI Session/Presentation Layers

• Remember this? Two relevant concepts …

CSE 461 University of Washington 5

– Provides functions needed by users

– Converts different representations

– Manages task dialogs

– Provides end-to-end delivery

– Sends packets over multiple links

– Sends frames of information

– Sends bits as signals

Considered 

part of the 

application, 

not strictly 

layered!



Session Concept

• A session is a series of related network interactions 
in support of an application task

• Often informal, not explicit

• Examples:
• Web page fetches multiple resources
• Skype call involves audio, video, chat

CSE 461 University of Washington 6



Presentation Concept

• Apps need to identify the type of content, and encode 
it for transfer 

• These are Presentation functions

• Examples:
• Media (MIME) types, e.g., image/jpeg, identify content type
• Transfer encodings, e.g., gzip, identify the encoding of 

content
• Application headers are often simple and readable versus 

packed for efficiency

CSE 461 University of Washington 7



Evolution of Internet Applications

• Always changing, and growing …

CSE 461 University of Washington 8

20101970 19901980 2000

Traffic

File Transfer (FTP)
Email (SMTP)

News (NTTP)

Secure Shell (ssh)Telnet

Email

Web (HTTP)
Web (CDNs)

P2P (BitTorrent)
Web (Video)

???



Evolution of Internet Applications (2)

• For a peek at the state of the Internet:
• Akamai’s State of the Internet Report (quarterly)
• Cisco’s Visual Networking Index
• Mary Meeker’s Internet Report

• Robust Internet growth, esp. video, wireless, mobile, cats
• Most (70%) traffic is video (expected 82% by 2022)
• Mobile traffic overtakes desktop (2016)
• 15% of traffic is cats (2013)
• Growing attack traffic from China, also U.S. and Russia

CSE 461 University of Washington 9



Evolution of the Web

CSE 461 University of Washington 10

Source: http://www.evolutionoftheweb.com, Vizzuality, Google, and Hyperakt



Evolution of the Web (2)

CSE 461 University of Washington 11

Source: http://www.evolutionoftheweb.com, Vizzuality, Google, and Hyperakt



Domain Name System



DNS

• Human-readable host names, and more

CSE 461 University of Washington 13

www.uw.edu?

Network

128.94.155.135



Names and Addresses

• Names are higher-level identifiers for resources
• Addresses are lower-level locators for resources

• Multiple levels, e.g. full name → email → IP address → Ethernet addr
• Resolution (or lookup) is mapping a name to an address

CSE 461 University of Washington 14

Name, e.g.
“Andy Tanenbaum,”

or “flits.cs.vu.nl” 

Address, e.g.
“Vrijie Universiteit, Amsterdam”

or IPv4 “130.30.27.38”

Directory

Lookup



Before the DNS – HOSTS.TXT

• Directory was a file HOSTS.TXT regularly retrieved 
for all hosts from a central machine at the NIC 
(Network Information Center)

• Names were initially flat, became hierarchical (e.g., 
lcs.mit.edu) ~85 

• Not manageable or efficient as the ARPANET grew …

CSE 461 University of Washington 15



DNS

• A naming service to map between host names and their 
IP addresses (and more)

• www.uwa.edu.au → 130.95.128.140

• Goals:
• Easy to manage (esp. with multiple parties)
• Efficient (good performance, few resources)

• Approach:
• Distributed directory based on a hierarchical namespace
• Automated protocol to tie pieces together

CSE 461 University of Washington 16



DNS Namespace

• Hierarchical, starting from “.” (dot, typically omitted)



TLDs (Top-Level Domains)

• Run by ICANN (Internet Corp. for Assigned Names and Numbers)
• Starting in ‘98; naming is financial, political, and international

• 700+ generic TLDs
• Initially .com, .edu , .gov., .mil, .org, .net
• Unrestricted (.com) vs Restricted (.edu)
• Added regions (.asia, .kiwi), Brands (.apple), Sponsored (.aero) in 2012

• ~250 country code TLDs
• Two letters, e.g., “.au”, plus international characters since 2010
• Widely commercialized, e.g., .tv (Tuvalu)
• Many domain hacks, e.g., instagr.am (Armenia), kurti.sh (St. Helena)

CSE 461 University of Washington 18



DNS Zones

• A zone is a contiguous portion of the namespace

A zoneDelegation



DNS Zones (2)

• Zones are the basis for distribution
• EDU Registrar administers .edu
• UW administers washington.edu
• CSE administers cs.washington.edu

• Each zone has a nameserver to contact for 
information about it

• Zone must include contacts for delegations, e.g., .edu 
knows nameserver for washington.edu

CSE 461 University of Washington 20



DNS Resolution

• DNS protocol lets a host resolve any host name 
(domain) to IP address

• If unknown, can start with the root nameserver and 
work down zones

• Let’s see an example first …

CSE 461 University of Washington 21



DNS Resolution (2)

• flits.cs.vu.nl resolves robot.cs.washington.edu



Iterative vs. Recursive Queries

• Recursive query
• Nameserver resolves and returns final answer
• E.g., flits → local nameserver

• Iterative (Authoritative) query
• Nameserver returns answer or who to contact for answer
• E.g., local nameserver → all others

CSE 461 University of Washington 23



Iterative vs. Recursive Queries (2)

Recursive

Iterative



Iterative vs. Recursive Queries (3)

• Recursive query
• Lets server offload client burden (simple resolver) for 

manageability
• Lets server cache results for a pool of clients

• Iterative query
• Lets server “file and forget”
• Easy to build high load servers

CSE 461 University of Washington 25



Local Nameservers

• Local nameservers often run by IT (enterprise, ISP)
• But may be your host or AP
• Or alternatives e.g., Google public DNS (8.8.8.8) 

Cloudflare’s public DNS (1.1.1.1)

• Clients need to be able to contact local nameservers
• Typically configured via DHCP

CSE 461 University of Washington 26



Root Nameservers

• Root (dot) is served by 13 server names
• a.root-servers.net to m.root-servers.net
• All nameservers need root IP addresses
• Handled via configuration file (named.ca)

• There are >250 distributed server instances
• Highly reachable, reliable service
• Most servers are reached by IP anycast (Multiple locations 

advertise same IP! Routes take client to the closest one.)
• Servers are IPv4 and IPv6 reachable

CSE 461 University of Washington 27



GO TO ROOT-SERVERS.ORG



Root Server Deployment

CSE 461 University of Washington 29

Source: http://www.root-servers.org. Snapshot on 27.02.12. Does not represent current deployment.



Caching

• Resolution latency needs to be low

• URLs don’t have much churn

• Cache query/responses to answer future queries 
immediately

• Including partial (iterative) answers
• Responses carry a TTL for caching

CSE 461 University of Washington 30

Nameserver

query out

response
Cache



Caching (2)

• flits.cs.vu.nl looks up and stores eng.washington.edu

CSE 461 University of Washington 31

1: query 2: query

UW nameserver
(for washington.edu)

3: eng.washington.edu4: eng.washington.edu

Local nameserver
(for cs.vu.nl)

Cache



Caching (3)

• flits.cs.vu.nl now directly resolves 
eng.washington.edu

CSE 461 University of Washington 32

1: query

UW nameserver
(for washington.edu)

4: eng.washington.edu

Local nameserver
(for cs.vu.nl)

I know the server for 
washington.edu!

Cache



DNS Protocol

• Query and response messages
• Built on UDP messages, port 53
• ARQ for reliability; server is stateless!
• Messages linked by a 16-bit ID field

Query

Response

Time

Client Server

ID=0x1234

ID=0x1234



DNS Protocol (2)

• Service reliability via replicas
• Run multiple nameservers for domain

• Return the list; clients use one answer

• Helps distribute load too

CSE 461 University of Washington 34

NS for uw.edu?

A

B

C

Use A, B or C



DNS Resource Records

• A zone is comprised of DNS resource records that 
give information for its domain names

CSE 461 University of Washington 35

Type Meaning

SOA Start of authority, has key zone parameters

A IPv4 address of a host

AAAA (“quad A”) IPv6 address of a host

CNAME Canonical name for an alias

MX Mail exchanger for the domain

NS Nameserver of domain or delegated subdomain



DNS Resource Records (2)

CSE 461 University of Washington 36

IP addresses 
of computers

Name server

Mail gateways

Start of Authority



DIG DEMO



DNS Security

• Security is a major issue
• Compromise redirects to wrong site!
• Not part of initial protocols ..

• DNSSEC (DNS Security Extensions)
• Mostly deployed

CSE 461 University of Washington 38

Um, security??



Goal and Threat Model

• Naming is a crucial Internet service
• Binds host name to IP address
• Wrong binding can be disastrous…

Introduction to Computer Networks 39

Internet

bank.com? 11.22.33.44
99.88.77.66



Goal and Threat Model (2)

• Goal is to secure the DNS so that the returned 
binding is correct

• Integrity/authenticity vs confidentiality

• Attacker can tamper with messages on the network

Introduction to Computer Networks 40

bank.com? 11.22.33.44

Network



DNS Spoofing

• Hang on – how can attacker corrupt the DNS?

Introduction to Computer Networks 41



DNS Spoofing

• Hang on – how can attacker corrupt the DNS?

• Can trick nameserver into caching the wrong binding
• By using the DNS protocol itself 
• This is called DNS spoofing

Introduction to Computer Networks 42



DNS Spoofing (2)

• To spoof, Trudy returns a fake DNS response that 
appears to be true

• Fake response contains bad binding

Client Nameserver

DNS query

False
DNS reply Trudy

Cache

Nameserver



DNS Spoofing (3)

• Lots of questions!
1. How does Trudy know when the DNS query is sent and 

what it is for?
2. How can Trudy supply a fake DNS reply that appears to 

be real? 
3. What happens when the real DNS reply shows up?

• There are solutions to each issue …

Introduction to Computer Networks 44



DNS Spoofing (4)

1. How does Trudy know when the query is sent and 
what it is for?

Introduction to Computer Networks 45



DNS Spoofing (5)

1. How does Trudy know when the query is sent and 
what it is for?

• Trudy can make the query herself!
• Nameserver works for many clients
• Trudy is just another client

Introduction to Computer Networks 46



DNS Spoofing (6)

2. How can Trudy supply a fake DNS reply that 
appears to be real? 

Introduction to Computer Networks 47



DNS Spoofing (7)

2. How can Trudy supply a fake DNS reply that 
appears to be real? 

• A bit more difficult. DNS checks:
• Reply is from authoritative nameserver (e.g., .com)
• Reply ID that matches the request
• Reply is for outstanding query

• (Nothing about content though …)

Introduction to Computer Networks 48



DNS Spoofing (8)

2. How can Trudy supply a fake DNS reply that 
appears to be real? 

• Example Technique:
1. Put IP of authoritative nameserver as the source IP ID is 

16 bits (64K)
2. Send reply right after query
3. Send many guesses! (Or if a counter, sample to predict.)

• Good chance of succeeding!

Introduction to Computer Networks 49



DNS Spoofing (8)

3. What happens when real DNS reply shows up?

Introduction to Computer Networks 50



DNS Spoofing (9)

3. What happens when real DNS reply shows up?

• Likely not be a problem
• There is no outstanding query after fake reply is accepted
• So real reply will be discarded

Introduction to Computer Networks 51



DNSSEC (DNS Security Extensions)

• Extends DNS with new record types
• RRSIG for digital signatures of records
• DNSKEY for public keys for validation
• DS for public keys for delegation
• First version in ‘97, revised by ’05

• Deployment requires software upgrade at both 
client and server

• Root servers upgraded in 2010
• Followed by uptick in deployment

Introduction to Computer Networks 52



DNSSEC (DNS Security Extensions)

• Extends DNS with new record types
• RRSIG for digital signatures of records
• DNSKEY for public keys for validation
• DS for public keys for delegation
• First version in ‘97, revised by ’05

• Deployment requires software upgrade at both 
client and server

• Root servers upgraded in 2010
• Followed by uptick in deployment

Introduction to Computer Networks 53

Other attacks?









HTTP



HTTP, (HyperText Transfer Protocol)

• Basis for fetching Web pages

CSE 461 University of Washington 58

request

Network



CSE 461 University of Washington 59

Sir Tim Berners-Lee (1955–) 

• Inventor of the Web
• Dominant Internet app since mid 90s
• He now directs the W3C

• Developed Web at CERN in ‘89
• Browser, server and first HTTP
• Popularized via Mosaic (‘93), Netscape
• First WWW conference in ’94 …

Source: By Paul Clarke, CC-BY-2.0, via Wikimedia Commons



Web Context 

CSE 461 University of Washington 60

HTTP request

HTTP response

Page as a set of related 
HTTP transactions



Web Protocol Context

• HTTP is a request/response protocol for fetching 
Web resources

• Runs on TCP, typically port 80
• Part of browser/server app

TCP

IP

802.11

browser

HTTP

TCP

IP

802.11

server

HTTP
request

response



Fetching a Web page with HTTP

• Start with the page URL (Uniform Resource Locator):
http://en.wikipedia.org/wiki/Vegemite

• Steps:
• Resolve the server to IP address (DNS)
• Set up TCP connection to the server
• Send HTTP request for the page
• (Await HTTP response for the page)
• Execute/fetch embedded resources/render
• Clean up any idle TCP connections

CSE 461 University of Washington 62

Protocol Page on serverServer



HTML

• Hypertext Markup Language (HTML)
• Uses Extensible Markup Language (XML) to build a 

markup language for web content

• Key innovation was the “hyperlink”, an HTML 
element linking to other HTML elements using 
URLs

• Also includes Cascading Style Sheets (CSS) for 
maintaining look-and-feel across a domain

• Specific standards have been the subject of many 
“browser wars”



DOM (Document Object Model)

• Base primitive for web browsers interacting 
with HTML

• Use HTML (XML) to create a tree of elements
• Javascript code is embedded in the page and 

modifies the DOM based on:
• User actions
• Asynchronous Javascript
• Other server-side actions

CSE 461 University of Washington 64



DOM Example

CSE 461 University of Washington 65



DOM Examples

CSE 461 University of Washington 66

⚫ Go to browser and show DOM



Static vs Dynamic Web pages

• Static is just static files, e.g., image
• Dynamic has ongoing computation of some kind

• e.g., Javascript on client, PHP on server, or both 

CSE 461 University of Washington 67



HTTP Protocol

• Originally a simple protocol, with many options 
added over time

• Text-based commands, headers
• Try it yourself:

• As a “browser” fetching a URL
• Run “telnet en.wikipedia.org 80”
• Type “GET /wiki/Vegemite HTTP/1.0” to server followed 

by a blank line
• Server will return HTTP response with the page contents 

(or other info)

CSE 461 University of Washington 68



HTTP Protocol (2)

• Commands used in the request
Method Description

GET Read a Web page

HEAD Read a Web page's header

POST Append to a Web page

PUT Store a Web page

DELETE Remove the Web page

TRACE Echo the incoming request

CONNECT Connect through a proxy

OPTIONS Query options for a page

Fetch
page

Upload
data

Basically
defunct



HTTP Protocol (3)

• Codes returned with the response

CSE 461 University of Washington 70

Code Meaning Examples

1xx Information 100 = server agrees to handle client's request

2xx Success 200 = request succeeded; 204 = no content 
present

3xx Redirection 301 = page moved; 304 = cached page still valid

4xx Client error 403 = forbidden page; 404 = page not found

5xx Server error 500 = internal server error; 503 = try again later

Yes!



Representational State Transfer (REST)

• Using HTTP for general network services
• An ideal for design of HTTP-based APIs

• Called RESTful APIs

• 5 Core Tenants:
• (1) Uniform Interface and (2) Client/Server 
• (3) Stateless (no state on server)
• (4) Cachable (individual urls can be cached)
• (5) Layered (no visibility under REST hood



Representational State Transfer (REST)

• RESTful Interfaces use HTTP to provide a variety of 
other media (e.g., JSON)

• For example, GET will always be safe and change nothing

HTTP methods

Uniform Resource Locator (URL) GET PUT POST DELETE

Collection, such 
as http://api.example.com/reso

urces/

List the URIs and perhaps other 
details of the collection's 
members.

Replace the entire collection 
with another collection.

Create a new entry in the 
collection. The new entry's URI 
is assigned automatically and is 
usually returned by the 
operation.[17]

Delete the entire collection.

Element, such 
as http://api.example.com/reso

urces/item17

Retrieve a representation of the 
addressed member of the 
collection, expressed in an 
appropriate Internet media 
type.

Replace the addressed member 
of the collection, or if it does 
not exist, create it.

Not generally used. Treat the 
addressed member as a 
collection in its own right 
and create a new entry within 
it.[17]

Delete the addressed member 
of the collection.

https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-thereisnorightway-17
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-thereisnorightway-17


HTTP Performance



PLT (Page Load Time)

• PLT was the key measure of web performance 
• From click until user sees page
• Small increases in PLT decrease sales

• PLT depends on many factors
• Structure of page/content
• HTTP (and TCP!) protocol
• Network RTT and bandwidth

CSE 461 University of Washington 74



CSE 461 University of Washington 75

Early Performance

• HTTP/1.0 used one TCP connection 
to fetch one web resource

• Made HTTP very easy to build
• But gave fairly poor PLT …

Client Server



Remember: DOM Example

CSE 461 University of Washington 76



CSE 461 University of Washington 77

Early Performance (2)

• HTTP/1.0 used one TCP connection 
to fetch one web resource

• Made HTTP very easy to build
• But gave fairly poor PLT…



CSE 461 University of Washington 78

Early Performance (3)

• Many reasons why PLT is larger than 
necessary

• Sequential request/responses, even 
when to different servers

• Multiple TCP connection setups to the 
same server

• Multiple TCP slow-start phases

• Network is not used effectively
• Worse with many small resources / page



Ways to Decrease PLT

1. Reduce content size for transfer
• Smaller images, gzip

2. Change HTTP to make better use of bandwidth
3. Change HTTP to avoid repeat sending of same 

content
• Caching, and proxies

4. Move content closer to client
• CDNs [later]

CSE 461 University of Washington 79



Parallel Connections

• One simple way to reduce PLT
• Browser runs multiple (8, say) HTTP instances in parallel
• Server is unchanged; already handled concurrent requests 

for many clients

• How does this help?
• Single HTTP wasn’t using network much …
• So parallel connections aren’t slowed much
• Pulls in completion time of last fetch

CSE 461 University of Washington 80



Persistent Connections

• Parallel connections compete with each other for 
network resources

• 1 parallel client ≈ 8 sequential clients?
• Exacerbates network bursts, and loss

• Persistent connection alternative
• Make 1 TCP connection to 1 server
• Use it for multiple HTTP requests

CSE 461 University of Washington 81



Persistent Connections (2)

CSE 461 University of Washington 82

One request per connection

Sequential requests 
per connection

Pipelined requests 
per connection



Persistent Connections (3)

• Widely used as part of HTTP/1.1
• Supports optional pipelining
• PLT benefits depending on page structure, but easy on 

network

CSE 461 University of Washington 83



HTTP Futures



HTTP 1.1

• This was it! Standard protocol until circa 2015.

• HTTP 1.1 everywhere for all web access

• Until our favorite massive web company started noticing some 
trends….



Continued Growth

Country Mobile-Only

Internet Users

Egypt 70%

India 59%

South Africa 57%

Indonesia 44%

United States 25%

Thanks to Ben Greenstein @ google for slides 



Continued Growth (2)

RAM on Android Devices



Tecno Y2
512MB RAM, 8GB ROM
1.3GHz dual-core Cortex-A7
2G & 3G only
4” (480x800)

Infinix Hot 4 Lite
1GB RAM, 16GB ROM
1.3GHz quad-core Cortex-A7
2G & 3G only
5.5” (720x1280)

Tecno W3
1GB RAM, 8GB ROM
1.3GHz dual-core Cortex-A7
2G & 3G only
5” (480x854)

Source: Chrome logs

Continued Growth (3)



● 284 Requests

● 93 Connections

● 4.5MB transferred
● Lots of gaps

Waterfall of first 4 

seconds of page load



■ First Contentful Paint (FCP) “is it happening?” 

■ First Meaningful Paint (FMP) “is it useful?”

■ Time to Interactive (TTI) “is it usable?”

Key user moments (PLT is Dumb)



HTTP Changes

HTTP/1.0: TCP connection per request

HTTP/1.1: Persistence and pipelining

HTTP2/SPDY: Targeted performance specifically
● All happens below HTTP layer
● Prioritized stream multiplexing
● Header compression
● Server push
● Started as SPDY, standardized as HTTP/2 in 2015 

after every possible bikeshed deep discussion

TLS

TCP

IP

HTTP/2 (SPDY)



HTTP 2 Optimizations

Prioritized Stream Multiplexing
● HTTP 1.0: Each HTTP connection has own TCP
● HTTP 1.1: Share one TCP connection to save setup
● HTTP 2.0: Allow multiple concurrent HTTP connections in a single TCP 

flow to avoid head-of-line blocking
Header Compression
● HTTP Headers very wordy; Designed to be human readable
● This was dumb. Lets compress them (usually gzip).



Server Push: example resource loading gap

● Browser requests 
and receives HTML, 
encounters 
<script 

src=”...”>

● Similarly, JavaScript 
might src a 
dependent 
JavaScript file

Browser Server

HTML 

Request/Response

JavaScript 

Request/Response

Gap



Server Push: example resource loading gap

Use HTTP/2 server push to close gaps

Or use Link: rel=preload

● Particularly useful for hidden 
render blocking resources 
(HRBRs)

Browser Server

HTML 

Request/Response

Push of 

JavaScript 

Response

No

Gap



Simple server push lab experiment

Result: No benefit when 
HTML size > BD Product

Why? No gap even 
without push. 

Opportunity only on 
high BDP networks,
e.g., LTE and Cable 



QUIC/HTTP 3.0 

Goal: make HTTPS transport even 
faster!

Deployed at Google starting 2014

IETF working group formed in 2016

Standardized as HTTP 3.0 in 
October 2018

TLS

HTTP/2

TCP

IP

QUIC

UDP

HTTP



QUIC/HTTP 3.0 Innovations (1)

• Speed up connection establishment
⚫ Include TLS/Encryption in setup (TLS 1.3)
⚫Similarly pack HTTP content into setup

CSE 461 University of Washington 97



CSE 461 University of Washington 98



QUIC/HTTP 3.0 Innovations (2)

• Remove TCP/Switch to UDP
• Error correction: Groups of packets contain a FEC 

packet which can be used to recreate lost packet.
• Congestion control: Move congestion control to 

user space with pluggable implementations
• BBR Implementation: all packets carry new 

sequence numbers, allows for precise roundtrip-
time calculation.

• Per-packet encryption (rather than flow)

CSE 461 University of Washington 99



QUIC/HTTP 3.0 Innovations (3)

• Support mobility through 64-bit stream IDs
• This means you can change IP address or ports 

but still keep your connection alive

CSE 461 University of Washington 100



QUIC/HTTP 3.0: Problem of Mobility

• What happens to IP addresses 
and HTTP sessions when a user 
moves between wifi APs?



QUIC/HTTP 3.0: Problem of Mobility

• What happens to IP addresses 
and HTTP sessions when a user 
moves between wifi APs?

• What happens to IP addresses 
and HTTP sessions when a user 
moves between cellular and 
wifi?



IP Mobility

• Hard problem: IP addresses are supposed to identify nodes in the 
network but change as nodes move around. 

• Proposed solutions:
• IP Anchor: Place a server at an IP and tunnel traffic to user.

• DNS Anchor: Have DNS server which rapidly updates as user moves between 
IP addresses

• All try to keep some global state constant: IP or DNS Name



QUIC summary

Makes HTTPS faster, particularly in the tail

35% of Google’s egress traffic (7% of the Internet)

Deploying at Google was 3+ years of hard work



Going Farther

• Flywheel proxy service 
• Compresses HTTP pages by 60%. 

• Transcodes to WebP, WebM, Brotli
Uses HTTP/2 and QUIC

• Render the page on the server

• 50% speedup, >90% compression

• Trades fidelity loss for speed, so we do this only 
on very slow networks



Web Caching/CDNs



Web Caching

• Users often revisit web pages
• Big win from reusing local copy!
• This is caching

• Key question:
• When is it OK to reuse local copy?

CSE 461 University of Washington 107

NetworkCache

Local copies

Server



Web Caching (2)

• Locally determine copy is still valid
• Based on expiry information such as “Expires” header 

from server
• Or use a heuristic to guess (cacheable, freshly valid, not 

modified recently) 
• Content is then available right away

CSE 461 University of Washington 108

NetworkCache
Server



Web Caching (3)

• Revalidate copy with remote server
• Based on timestamp of copy such as “Last-Modified” 

header from server
• Or based on content of copy such as “Etag” server header
• Content is available after 1 RTT

CSE 461 University of Washington 109

NetworkCache
Server



Web Caching (4)

• Putting the pieces together:

CSE 461 University of Washington 110



Web Proxies

• Place intermediary between pool of clients and 
external web servers

• Benefits for clients include caching and security checking
• Organizational access policies too!

• Proxy caching
• Clients benefit from larger, shared cache
• Benefits limited by secure / dynamic content, as well as 

“long tail”

CSE 461 University of Washington 111



Web Proxies (2)

• Clients contact proxy; proxy contacts server

CSE 461 University of Washington 112

Cache

Near client

Far from client



Content Delivery Networks

• As the web took off in the 90s, traffic volumes grew 
and grew. This:

1. Concentrated load on popular servers
2. Led to congested networks and need to provision 

more bandwidth
3. Gave a poor user experience

• Idea:
• Place popular content near clients
• Helps with all three issues above

CSE 461 University of Washington 113



Before CDNs

• Sending content from the source to 4 users takes 4 x 
3 = 12 “network hops” in the example

CSE 461 University of Washington 114

Source

User

User

. . .



After CDNs

• Sending content via replicas takes only 4 + 2 = 6 
“network hops”

CSE 461 University of Washington 115

Source

User

User

. . .

Replica



After CDNs (2)

• Benefits assuming popular content:
• Reduces server, network load
• Improves user experience

CSE 461 University of Washington 116

Source

User

User

. . .

Replica



CSE 461 University of Washington 117

Popularity of Content
• Zipf’s Law: few popular items, many 

unpopular ones; both matter

Zipf popularity
(kth item is 1/k)

Rank Source: Wikipedia

George Zipf (1902-1950)



How to place content near clients? 

CSE 461 University of Washington 118



How to place content near clients? 

• Use browser and proxy caches
• Helps, but limited to one client or clients in one 

organization

• Want to place replicas across the Internet for use by 
all nearby clients

• Done by clever use of DNS

CSE 461 University of Washington 119



Content Delivery Network

CSE 461 University of Washington 120



Content Delivery Network (2)

• DNS gives different answers to clients
• Tell each client the nearest replica (map client IP)

CSE 461 University of Washington 121



Business Model

• Clever model pioneered by Akamai
• Placing site replica at an ISP is win-win
• Improves site experience and reduces ISP bandwidth usage

CSE 461 University of Washington 122

Consumer

site

ISP

User

User

. . .

Replica



CDNs - Issues

• Security
• What about private information?
• How to cache/forward encrypted content?

• Basically can’t! Big players just share/ship keys.

• Net neutrality
• I.org, FreeBasics -> Basically CDNs

• But for reasons of price, not efficiency

• Who decides who gets to place CDNs?



End-to-End principle



End-to-end Principle

• Broad networking principle
• French CYCLADES network (after ARPA) first to implement

• Idea: The network cannot be trusted. Do it yourself.
• “Reliability and raw error rates are secondary. The 

network must be built with the expectation of 
heavy damage anyway. Powerful error removal 
methods exist.”



E2E Example: Error-correcting codes

IP:
Host detects 
errors

802.11:
Link detects errors



E2E Example: ARQ

TCP:
Host retransmits 
on failure

802.11:
Link detects drops 
and retransmits



E2E Example: In-order delivery 

TCP:
Host enforces in-
order delivery

SS5:
Network enforces 
in-order delivery



E2E Example: Security

SSL:
Host encrypts 
content

GSM:
Network encrypts
content



End-to-End

• What are the limitations of the End-to-End principle?


