Error Correction

CSE 461
Ratul Mahajan



Why Error Correction is Harder

If we had reliable check bits we could use them to
narrow down the position of the error
* Then correction would be easy

But error could be in the check bits as well as the
data bits

* Data might even be correct!



Intuition for Error Correcting Code

Assume a code with a Hamming distance of at least 3
* Need 23 bit errors to change a valid codeword into another
* Single bit errors will be closest to a unique valid codeword

If we assume errors are only 1 bit, we can correct
mapping an error to the closest valid codeword
* Works for d errors if HD > 2d + 1



Intuition (2)

00000 Q. viiic
O@® OO @0 odeverd

OO00000

000000,
Q ‘ Q Q ‘ Q codeword

OO00000



Intuition (3)

Single \G Q 88 g%oc\zl/g\l/i/%rd

bit error

from A Q

O OLOOOO
Three bit Q Q Q Q\ Error
errorsto. (@ () O @ ) codeword

S 000000




Hamming Code

Method for constructing a code with a distance of 3
e Uses n = 2Kk — 1, e.g., n=4, k=3
* Put check bits in positions p that are powers of 2, starting
with position 1
* N-th check bit is parity of bit positions with n-th LSBit is
same as p’s

Plus an easy way to correct [soon]



Cheat sheet

Hamming Code (2) 1: 0001
2:0010
* Example: data=0101, 3 check bits iﬁ 8(1)3(1)
* 7 bit code, check bit positions 1, 2, 4 5 0101
* Check 1 covers positions 1, 3,5, 7 (LSB is 1) 6: 0110
* Check 2 covers positions 2, 3,6, 7 (2" LSBis1) 7:0111

* Check 4 covers positions 4, 5, 6, 7 (3™ LSB is 1)

0100101

p1=0+1+1=0, p,=0+0+1=1, py=1+0+1=0

CSE 461 University of Washington



Hamming Code (3)

* To decode:

* Recompute check bits (with parity sum including the
check bit)

* Arrange as a binary number

* Value (syndrome) tells error position
* VValue of zero means no error

* Otherwise, flip bit to correct




Hamming Code (5)

* Example, continued
— 0100101

P1= Pr=
Pg=

Syndrome =
Data =



Hamming Code (6)

* Example, continued
— 0100101

p1=0+0+1+1 =0, p,=1+0+0+1=0,
ps=0+1+0+1=0

Syndrome = 000, no error
Data=0101



Hamming Code (7)

* Example, continued
— 0100111

P1= Pr=
Pg=

Syndrome =
Data =



Hamming Code (8)

* Example, continued
— 0100111

p1=0+0+1+1 =0, p,=1+0+1+1=1,
ps=0+1+1+1=1

Syndrome =1 10, flip position 6
Data =01 01 (correct after flip!)



Hamming Code (9)

* Example: bad message 0100111
7 bit code, check bit positions 1, 2, 4
* Check 1 covers positions 1, 3,5, 7
* Check 2 covers positions 2, 3, 6, 7
* Check 4 covers positions 4, 5, 6, 7

0100111 —

p;=0+0+1+41=0, p,=1+0+1+1=1, py,=0+1+1+1=1



Hamming Code (10)

* Example: bad message 0100111

7 bit code, check bit positions 1, 2, 4
* Check 1 covers positions 1, 3, 5, 7

* Check 2 covers positions 2, 3 @ 7/

* Check 4 covers positions 4, 5)\6) 7

0100111 —

p;=0+0+1+41=0, p,=1+0+1+1=1, py,=0+1+1+1=1



Other Error Correction Codes

* Real codes are more involved than Hamming

*E.g., Convolutional codes (§3.2.3)

* Take a stream of data and output a mix of the input bits

* Makes each output bit less fragile

* Decode using Viterbi algorithm (uses bit confidence values)
00 >/100 -
01 01
10k /10K~
T —>11




Detection vs. Correction

Example:
* 1000 bit messages with a bit error rate (BER) of 1 in 10000

Which is better will depend on the pattern of errors



Detection vs. Correction (2)

Assume bit errors are random
* Messages have 0 or maybe 1 error (1/10 of the time)

Error correction:
* Need 10 check bits per message (1000 <= 2
* Overhead: 10 bits per message

10_10-1)

Error detection:
* Need 1 check bits per message plus 1000 bit retransmission
e Overhead: 101 bits per message



Detection vs. Correction (3)

Assume errors come in bursts of 100
* Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction:
* Need >>100 check bits per message
* Overhead: >> 100 bits per message

Error detection:
* Need 32 check bits per message (say, CRC-32) plus 1000 bit resend 2/1000 of the time
* Overhead: 34 bits per message



Detection vs. Correction (4)

 Error correction:
* Needed when errors are expected
e Or when no time for retransmission

* Error detection:
* More efficient when errors are not expected
 And when errors are large when they do occur



Error Correction In Practice

* Heavily used in physical layer
* Used for demanding links like 802.11, DVB, WiMAX, power-line, ...
* Convolutional codes widely used in practice

* Error detection (w/ retransmission) is used in the link layer and above
for residual errors

* Correction also used in the application layer
e Called Forward Error Correction (FEC)

* Normally with an erasure error model
e E.g., Reed-Solomon (CDs, DVDs, etc.)



Error Correction in Practice (2)

* Everywhere! It is a key issue
* Different layers contribute differently

Application Recover actions
(correctness)
Transport A
Network
Link
: Mask errors
Physical 2 .
(performance optimization)




Multiple Access



Topic

* Multiplexing is the network word for the sharing of a resource

* Classic scenario is sharing a link among different users
* Time Division Multiplexing (TDM)
* Frequency Division Multiplexing (FDM)



Time Division Multiplexing (TDM)

Users take turns on a fixed schedule

Round-robin ___ |, 5
TDM mux H|° e

3 — "

Guard time

CSE 461 University of Washington



Frequency Division Multiplexing (FDM)

* Put different users on different frequency bands

Attenuation factor

Channel 1

Channel 2

Channel 3

—

300 3100

Frequency (Hz)

—_—
[

R ———
(C

' Channel 2

{

\ Channel 1 Channel 3
J A \L mm

[ 7780 64 68 72

l
| Frequency (kHz) \
i

L . ﬂ /’/ Overall FDM channel

60 64 68 72

Frequency (kHz)

CSE 461 University of Washington



TDM versus FDM

*In TDM a user sends at a high rate a fraction of the
time; in FDM, a user sends at a low rate all the time



TDM versus FDM (2)

*In TDM a user sends at a high rate a fraction of the
time; in FDM, a user sends at a low rate all the time

Rate TDM

HENNEN

FDM

Time




TDM/FDM Usage

e Statically divide a resource
 Suited for continuous traffic, fixed number of users

* Widely used in telecommunications

* TV and radio stations (FDM)
* GSM (2G cellular) allocates calls using TDM within FDM




Multiplexing Network Traffic

e Network traffic is bursty
 ON/OFF sources

* Load varies greatly over time
Rq\te

slime

CSE 461 University of Washington



Multiplexing Network Traffic (2)

e Network traffic is bursty

* Inefficient to always allocate user their ON needs with
TDM/FDM

Rq\te

slime

CSE 461 University of Washington



Multiplexing Network Traffic (3)

* Multiple access schemes multiplex users according
to demands — for gains of statistical multiplexing

Rg\te

slime

slime

"<
Two users, each need R Together they need R’ < 2R

CSE 461 University of Washington



How to control?

Two classes of multiple access algorithms

* Centralized: Use a “Scheduler” to pick who transmits and when
* Scales well and is usually efficient, but requires setup and management
e Example: Cellular networks (tower coordinates)

* Distributed: Have participants “figure it out” via some mechanism
* Operates well under low load and easy set up but scaling efficiently is hard
* Example: WiFi networks



Distributed (random) Access

* How do nodes share a single link? Who sends when?
* Explore with a simple model

* Assume no-one is in charge
* Distributed system




Distributed (random) Access (2)

* We will explore random multiple access control

(MAC) protocols

* This is the basis for classic Ethernet
* Remember: data traffic is bursty

| Busy! |  Z121.. | Ho hum
V

—f == ==




ALOHA Network

* Seminal computer network ©

connecting the Hawaiian /

islands in the late 1960s X,

1ISIANAs In tne %
* When should nodes send? < QL)
* A new protocol was devised by Hawaii <

Norm Abramson ... @)



ALOHA Protocol

e Simple idea:
* Node just sends when it has traffic.

* If there was a collision (no ACK received) then wait a
random time and resend

* That’s it!



ALOHA Protocol (2)

Some frames will  user
be lost, but many A
may get through... =

e Limitations?

CoIIision\_:,—». Time — F—‘igollision



ALOHA Protocol (3)

e Simple, decentralized protocol that works well under low load!

* Not efficient under high load
* Analysis shows at most 18% efficiency
* Improvement: divide time into slots and efficiency goes up to 36%

 We'll look at other improvements



