
Error Correction
CSE 461

Ratul Mahajan

Why Error Correction is Harder

If we had reliable check bits we could use them to
narrow down the position of the error
• Then correction would be easy

But error could be in the check bits as well as the
data bits
• Data might even be correct!

CSE 461 University of Washington

Intuition for Error Correcting Code

Assume a code with a Hamming distance of at least 3
• Need ≥3 bit errors to change a valid codeword into another
• Single bit errors will be closest to a unique valid codeword

If we assume errors are only 1 bit, we can correct
mapping an error to the closest valid codeword
•Works for d errors if HD ≥ 2d + 1

CSE 461 University of Washington

Intuition (2)

CSE 461 University of Washington

A

B

Valid
codeword

Error
codeword

Intuition (3)

CSE 461 University of Washington

A

B

Valid
codeword

Error
codeword

Single
bit error
from A

Three bit
errors to
get to B

Hamming Code

Method for constructing a code with a distance of 3
• Uses n = 2k – k – 1, e.g., n=4, k=3
• Put check bits in positions p that are powers of 2, starting

with position 1
• N-th check bit is parity of bit positions with n-th LSBit is

same as p’s

Plus an easy way to correct [soon]

CSE 461 University of Washington

Hamming Code (2)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7 (LSB is 1)
• Check 2 covers positions 2, 3, 6, 7 (2nd LSB is 1)
• Check 4 covers positions 4, 5, 6, 7 (3rd LSB is 1)

CSE 461 University of Washington

_ _ _ _ _ _ _
1 2 3 4 5 6 7

Cheat sheet
1: 0001
2: 0010
3: 0011
4: 0100
5: 0101
6: 0110
7: 0111

0 1 0 0 1 0 1

p1= 0+1+1 = 0, p2= 0+0+1 = 1, p4= 1+0+1 = 0

Hamming Code (3)

•To decode:
• Recompute check bits (with parity sum including the

check bit)
• Arrange as a binary number
• Value (syndrome) tells error position
• Value of zero means no error
• Otherwise, flip bit to correct

CSE 461 University of Washington

Hamming Code (5)

•Example, continued

CSE 461 University of Washington

0 1 0 0 1 0 1

p1= p2=
p4=

Syndrome =
Data =

1 2 3 4 5 6 7

Hamming Code (6)

•Example, continued

CSE 461 University of Washington

0 1 0 0 1 0 1

p1= 0+0+1+1 = 0, p2= 1+0+0+1 = 0,
p4= 0+1+0+1 = 0

Syndrome = 000, no error
Data = 0 1 0 1

1 2 3 4 5 6 7

Hamming Code (7)

•Example, continued

CSE 461 University of Washington

0 1 0 0 1 1 1

p1= p2=
p4=

Syndrome =
Data =

1 2 3 4 5 6 7

Hamming Code (8)

•Example, continued

CSE 461 University of Washington

0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1,
p4= 0+1+1+1 = 1

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)

1 2 3 4 5 6 7

Hamming Code (9)

•Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington

0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1, p4= 0+1+1+1 = 1
1 2 3 4 5 6 7

Hamming Code (10)

•Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington

0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1, p4= 0+1+1+1 = 1
1 2 3 4 5 6 7

Other Error Correction Codes

•Real codes are more involved than Hamming
•E.g., Convolutional codes (§3.2.3)
• Take a stream of data and output a mix of the input bits
•Makes each output bit less fragile
• Decode using Viterbi algorithm (uses bit confidence values)

CSE 461 University of Washington

Detection vs. Correction

Example:
• 1000 bit messages with a bit error rate (BER) of 1 in 10000

Which is better will depend on the pattern of errors

CSE 461 University of Washington

Detection vs. Correction (2)

Assume bit errors are random
• Messages have 0 or maybe 1 error (1/10 of the time)

Error correction:
• Need 10 check bits per message (1000 <= 210 – 10 – 1)
• Overhead: 10 bits per message

Error detection:
• Need 1 check bits per message plus 1000 bit retransmission
• Overhead: 101 bits per message

CSE 461 University of Washington

Detection vs. Correction (3)

Assume errors come in bursts of 100
• Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction:
• Need >>100 check bits per message
• Overhead: >> 100 bits per message

Error detection:
• Need 32 check bits per message (say, CRC-32) plus 1000 bit resend 2/1000 of the time
• Overhead: 34 bits per message

CSE 461 University of Washington

Detection vs. Correction (4)

• Error correction:
• Needed when errors are expected
• Or when no time for retransmission

• Error detection:
• More efficient when errors are not expected
• And when errors are large when they do occur

CSE 461 University of Washington

Error Correction in Practice

• Heavily used in physical layer
• Used for demanding links like 802.11, DVB, WiMAX, power-line, …
• Convolutional codes widely used in practice

• Error detection (w/ retransmission) is used in the link layer and above
for residual errors

• Correction also used in the application layer
• Called Forward Error Correction (FEC)
• Normally with an erasure error model
• E.g., Reed-Solomon (CDs, DVDs, etc.)

CSE 461 University of Washington

Error Correction in Practice (2)

•Everywhere! It is a key issue
• Different layers contribute differently

CSE 461 University of Washington

Recover actions
(correctness)

Mask errors
(performance optimization)

Physical

Link

Network

Transport

Application

Multiple Access

CSE 461 University of Washington

Topic

• Multiplexing is the network word for the sharing of a resource

• Classic scenario is sharing a link among different users
• Time Division Multiplexing (TDM)
• Frequency Division Multiplexing (FDM)

CSE 461 University of Washington

Time Division Multiplexing (TDM)

•Users take turns on a fixed schedule

CSE 461 University of Washington

2 2 2 2

Frequency Division Multiplexing (FDM)

• Put different users on different frequency bands

CSE 461 University of Washington

Overall FDM channel

TDM versus FDM

• In TDM a user sends at a high rate a fraction of the
time; in FDM, a user sends at a low rate all the time

CSE 461 University of Washington

TDM versus FDM (2)

• In TDM a user sends at a high rate a fraction of the
time; in FDM, a user sends at a low rate all the time

CSE 461 University of Washington

Rate

Time
FDM

TDM

TDM/FDM Usage

•Statically divide a resource
• Suited for continuous traffic, fixed number of users

•Widely used in telecommunications
• TV and radio stations (FDM)
• GSM (2G cellular) allocates calls using TDM within FDM

CSE 461 University of Washington

Multiplexing Network Traffic

•Network traffic is bursty
• ON/OFF sources
• Load varies greatly over time

CSE 461 University of Washington

Rate

Time
Rate

Time

R

R

Multiplexing Network Traffic (2)

•Network traffic is bursty
• Inefficient to always allocate user their ON needs with

TDM/FDM

CSE 461 University of Washington

Rate

Time
Rate

Time

R

R

Multiplexing Network Traffic (3)

•Multiple access schemes multiplex users according
to demands – for gains of statistical multiplexing

CSE 461 University of Washington

Rate

Time
Rate

Time

Rate

Time

R

R

R’<2R

Two users, each need R Together they need R’ < 2R

How to control?

Two classes of multiple access algorithms

• Centralized: Use a “Scheduler” to pick who transmits and when
• Scales well and is usually efficient, but requires setup and management
• Example: Cellular networks (tower coordinates)

• Distributed: Have participants “figure it out” via some mechanism
• Operates well under low load and easy set up but scaling efficiently is hard
• Example: WiFi networks

CSE 461 University of Washington

Distributed (random) Access

•How do nodes share a single link? Who sends when?
• Explore with a simple model

•Assume no-one is in charge
• Distributed system

CSE 461 University of Washington

Distributed (random) Access (2)

•We will explore random multiple access control
(MAC) protocols
• This is the basis for classic Ethernet
• Remember: data traffic is bursty

CSE 461 University of Washington

Zzzz..Busy! Ho hum

CSE 461 University of Washington

ALOHA Network

•Seminal computer network
connecting the Hawaiian
islands in the late 1960s
•When should nodes send?
• A new protocol was devised by

Norm Abramson …
Hawaii

ALOHA Protocol

•Simple idea:
• Node just sends when it has traffic.
• If there was a collision (no ACK received) then wait a

random time and resend
•That’s it!

CSE 461 University of Washington

CSE 461 University of Washington

ALOHA Protocol (2)

•Some frames will
be lost, but many
may get through…

• Limitations?

ALOHA Protocol (3)

• Simple, decentralized protocol that works well under low load!

• Not efficient under high load
• Analysis shows at most 18% efficiency
• Improvement: divide time into slots and efficiency goes up to 36%

• We’ll look at other improvements

CSE 461 University of Washington

