

What is SAMPLING?

Digital Data Acquisition

- Data Representation - Digital vs. Analog
- Analog-to-Digital Conversion
- Number Systems
- Binary Numbers
- Binary Arithmetic
- Sampling \& Aliasing

Data Representation - Digital vs.
Analog

Digital:
1s and 0s, (1001
1011) 2

- Advantages
- Disadvantages

E Analog:
3.141592687..., 1/3

- Advantages
- Disadvantages

Analog-to-Digital Conversion

- Converts analog voltages to binary integers.

Analog-to-Digital

 Conversion
- ADC calibration

Calibration Code

CSE466

Analog-to-Digital Conversion

- Input Range
- Unipolar: ($0, \mathrm{~V}_{\text {AdCmax }}$)
- Bipolar: ($-\mathrm{V}_{\text {ADCMAX }},+\mathrm{V}_{\text {ADCMAX }}$) (Nominal Range)
- Clipping:

$$
\text { If }\left|\mathrm{V}_{\text {IN }}\right|>\left|\mathrm{V}_{\text {ADCMAX }}\right| \text {, then }\left|\mathrm{V}_{\text {OUT }}\right|=\left|\mathrm{V}_{\text {ADCMAX }}\right|
$$

Analog-to-Digital Conversion

- Quantization Interval (Q)
- n bit ADC, the input range is divided into $2^{n}-1$ intervals.
- 3 bit ADC:

$$
\mathrm{Q}=\frac{\mathrm{V}_{\mathrm{ADCMAX}}-\mathrm{V}_{\mathrm{ADC} \min }}{2^{n}-1}
$$

Analog-to-Digital Conversion

- Voltage to Integer Code
- n bit ADC

Code $=$ Round $\left[\frac{V_{I N}-V_{\text {ADCmin }}}{Q}\right] \quad$ Code $=$ Round $\left[\frac{V_{I N}}{Q}\right]$

Analog-to-Digital Conversion

- Voltage to Integer Code (cont.)

Ex: 3 bit $A D C, V_{A D C \text { min }}=-2 \mathrm{~V}$ and $V_{A D C M A X}=1.5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=1.25 \mathrm{~V}$
Q: Find the integer code for $V_{I N}$ using only positive integers and using both positive and negative integers.

Analog-to-Digital Conversion

- Convert Code to Estimated Voltage

$$
\Rightarrow \quad \hat{V}_{I N}=\operatorname{Code} \times Q+V_{\text {offse }}
$$

$V_{\text {oftsei }}$ voltage corresponding to code 0

Analog-to-Digital Conversion

- Convert Code to Estimated Voltage (cont.)

Ex: 3 bit ADC, $\mathrm{V}_{\text {ADCmin }}=0 \mathrm{~V}$ and $\mathrm{V}_{\text {ADCMAX }}=3.5 \mathrm{~V}$ Code $=2$
Q : What is the estimated input voltage $V_{I N}$?
Ex: 3 bit $A D C, V_{A D C \text { min }}=-2 \mathrm{~V}$ and $\mathrm{V}_{\text {ADCMAX }}=1.5 \mathrm{~V}$
Code $=2$ (Bipolar Coding)
Q : What is theestimated input voltage $\mathrm{V}_{\text {IN }}$?

Analog-to-Digital Conversion

- Maximum Quantization Error

Any $V_{I N} \in\left[\hat{V}_{I N}-\frac{Q}{2}, \hat{V}_{I N}+\frac{Q}{2}\right]$ will be coded to $\hat{V}_{I N}$

- Maximum Quantization Error $=\mathbf{Q} / \mathbf{2}$

Binary Numbers

- Binary Representation of Integers
$(\overbrace{(n-1)}^{d_{(n-2)} d_{(n-3)} \cdots d_{2} d_{1} d_{\text {LSB }}^{d_{0}}})$

$$
=d_{(n-1)} \times 2^{(n-1)}+d_{(n-2)} \times 2^{(n-2)}+d_{(n-3)} \times 2^{(n-3)}+\cdots+d_{2} \times 2^{2}+d_{1} \times 2^{1}+d_{0} \times \underbrace{2^{0}}_{1}
$$

where $d_{i} ' s=0$ or 1 .

- n bits binary: represents 2^{n} integers.

Ex: 4 bit Binary: $2^{4}=16$ integers, $(0,1,2, \ldots, 15)$.

- MSB: Most Significant Bit
- LSB: Least Significant Bit

Binary Numbers - Coding

Positive Integers

- Straight Binary

| Decimal
 $\left(10^{1} 10^{0}\right)$ | $\left.\begin{array}{c}\text { Binary } \\ \left(2^{3} 2^{2}\right.\end{array} 2^{1} 2^{0}\right)$ |
| :--- | :--- | :--- |

Binary Numbers - Coding

- Straight Binary (cont.)

Decimal	Binary
$(132)_{10}$	$(1011 ~ 0100)_{2}$

Q: What are the decimal integers represented by an n bit straight binary number?

Binary Number - Coding

- Binary Coded Decimal (BCD)
- Used a lot in LED digital display.
- Each digit of the decimal number is separately coded into binary number.

Ex: $\left(\begin{array}{llll}3 & 6\end{array}\right)_{10}=\left(\begin{array}{lll}0011 & 0110 & 0100\end{array}\right)_{B C D}$

Binary Numbers - Coding

Negative Integers

- Sign Bit Convention
- Uses the MSB as the sign bit:

$\mathrm{MSB}=0$	Positive	$\mathbf{0} 00$	$\mathbf{0}$

$M S B=1$	Negative	0	1	1

- Have two zeros. 010

Ex: ($0 \underbrace{101}_{1})_{2}=$
$(1110)_{2}$

$=$	1	0	-1	
MSB $($ Sign $B i t)$				
	1	1	1	-2
	1	0	-2	
	1	1	1	-3

CSE466
Binary

Decimal $\left(2^{2} 2^{1} 2^{0}\right)_{2}$ | 0 | 1 | 2 |
| :--- | :--- | :--- |
| 1 | 0 | 2 |
| 1 | 1 | 3 |

MSB (Sign Bit)

Binary Numbers - Coding

- 2's Complement (cont.)
- Number of bits is important.
- n bit 2's complement numbers can represent integers from:

$$
-\left(2^{(n-1)}\right) \leftarrow 0 \rightarrow\left(2^{(n-1)}-1\right)
$$

- Quick way of getting 2's complement numbers:

$$
8 \text { bit numbers: }-84 \mapsto 84=(01010100)_{2}
$$

Q: What is the largest positive integer and the smallest negative integer that a 5 bit 2's complement number can represent?
Q: What are the 8 bit 2's complement representations of 81 and -102?

Binary Arithmetic

Addition

- $0+0=0$
- $0+1=1,1+0=1$
- $1+1=0$, carry 1

Ex:
(8 bit 2's complement)

4
+6

+10 | $(0100)_{2}$ |
| :--- |
| $+(0110)_{2}$ |
| $(1010)_{2}$ |$\quad \mathbf{2 4 - 3 2 =}$

Why A/D-conversion?

Analog

input

E Signals are analog by nature

- ADC necessary for DSP

E Digital signal processing provides:

- Close to infinite SNR
- Low system cost
- Repetitive system

Quantization noise

-N-bit converter: $\delta=\frac{V_{F S R}}{2^{N}}$

Quantization noise (2)

Noise energy:
$V_{Q(R M S)}=\sqrt{\frac{1}{\delta} \int_{-\delta / 2}^{\delta / 2} V_{Q}^{2} d V_{Q}=\sqrt{\frac{\delta^{2}}{12}}}$

- Signal energy:
$V_{i n(R M S)}=\frac{\delta \cdot 2^{N}}{2 \sqrt{2}}$
$=$ SNR for ideal ADC:
$S N R=20 \log \left(\frac{V_{\text {in(RMS }}}{V_{Q_{\text {(RMS }}}}\right)$ $\operatorname{SNR}=20 \log \left(2^{N} \cdot \sqrt{\frac{3}{2}}\right)$

Successive approximation ADC

- N clock cycles conversion $F_{C L K}=F_{S} \cdot N$
+ High resolution (selfcalibration)
+ Easy implementation
- Distortion limited by component matching
- Need high frequency clock $T_{\text {Conversion }}=N \cdot T_{D A C _ \text {_sefling }}$
- Low speed

Step 1: Antialiasing

Sometimes an electronic signal will contain a range of frequencies that is greater than the range of frequencies contained in the information- bearing signal.

> For Example:

Step 1: Antialiasing

(10 Most information in a speech signal is contained in frequencies below 4 kHz , but noise and other factors may introduce frequency components greater than 4 kHz into an electronic speech signal.

CSE466

Step 1: Antialiasing

- A pre-filter is used to remove the unwanted part of the signal.

Step 2: Sampling

value of the analog signal is read at evenly spaced time intervals.

- Sample rate (frequency) is measured in megahertz.
- $1 \mathrm{mHz}=1,000,000 \mathrm{cps}$.
(Cycles per second).

Step 2: Sampling

Step 3: Quantization

The digital signal is defined only at the points at which it is sampled.

CSE466

Step 3: Quantization

- The height of each vertical bar can take on only certain values, shown by horizontal dashed lines, which are sometimes higher and sometimes lower than the original signal, indicated by the dashed curve.

CSE466

Step 3: Quantization

a If the graphic h 11 quantization levels, how many bits are needed to encode each sample?

Step 3: Quantization

- 4 bits... why?
- 1 bit would allow up to 2 levels

远 2 bits would allow up to 4 levels

- 3 bits would allow up to 8 levels
- 4 bits would allow up to 16 levels

Step 3: Quantization

- The difference between a quantized representation and an original analog signal is called the quantization noise.
- The more bits for quantization of a signal, the more closely the original signal is reproduced.

Step 3: Quantization

E Using higher sampling frequency and more bits for quantization will produce better quality digital video and audio.
EBut for the same length of video and audio, the file size will be much larger than the low quality signal.

Step 3: Quantization

目 The number of bits available to describe sampling values determines the resolution or accuracy of quantization.

- For example, if you have 8-bit analog to digital converters, the varying analog voltage must be quantized to 1 of 256 discrete values;
- a 16-bit converter has 65,536 values.

Step 4: Encoding

> Conversion of data into machine readable format.
$01001101 \sigma^{001101110}$
. $\mathrm{Q}^{1010100 \mathrm{y}}$

Nyquist Theorem

A theorem, developed by Harry Nyquist, which states that an analog signal waveform may be uniquely reconstructed, without error, from samples taken at equal time intervals.

Nyquist Theorem

The sampling rate must be equal to, or greater than, twice the highest frequency component in the analog signal.

Nyquist Theorem

Stated differently:
[ise highest frequency which can be accurately represented is one-half of the sampling rate.

Error

$=$ Sampling an analog signal can introduce ERROR.

- ERROR is the difference between a computed, estimated, or measured value and the true, specified, or theoretically correct value.

Nyquist Theorem

By sampling at TWICE the highest frequency:

- One number can describe the positive transition, and...
- One number can describe the negative transition of a single cycle.

Nyquist Theorem

The vertical lines are sample intervals, and the white dots are the crossing points - the actual samples taken by the conversion process.

CSE466

Nyquist Theorem

The sampling rate was below the Nyquist frequency, so the reconstructed waveform does not accurately reproduce the original:

Nyquist Theorem

This under-sampling results in aliasing which shows up as noise in digitized sound.
To correct the aliasing, A/D converters use lowpass filters to remove all signals above the Nyquist frequency.
To eliminate aliasing and to get high-fidelity sound, use a high sample rate.

Frequency aliasing

- When the highest frequency of the signal $F_{\text {input }}$ is greater than half the sampling ($F_{\text {sampling }} / 2$).
E.g. $F_{\text {input }}=20 \mathrm{KHz}, F_{\text {sampling }}$ must be over 40KHz.
nemedy: Use a low pass filter to cut off the input high frequency content before ADC sampling.
upper => sampling 6 times per cycle(fs $=6 \mathrm{f})$; middle $=>$ sampling 3 times per cycle(fs $=3 f$);
lower=>sampling 6 times in 5 cycles, from[1]

CSE466

Method to reduce aliasing noise

Input voltage $=\mathrm{V}$
Use low pass filter to remove high frequency before sampling

