

Basic Concepts of Electricity

- Voltage, Current, Resistance
- Voltage dividers
- Power

1

Electric Fields

- An electric field applies a force to a charge
 - Force on positive charge is in direction of electric field, negative is opposite
- Charges move if they are mobile
- An electric field is produced by charges (positive and negative charges)
- Electric fields can be produced by time varying magnetic fields (generator, antenna radiation)

2

Voltage Difference

- Voltage difference is the difference in potential energy in an electric field
- E = V/d
- As you move closer to a positive charge the voltage increases

Capacitor (electric field constant between parallel plates)

- A

Current

- An electric current is produced by the flow of electric charges
- Current = rate of charge movement
 - = amount of charge crossing a surface per unit time
 - = $\Delta Q/\Delta t$ = dQ/dt (instantaneous current)
- In conductors, current flow is due to electrons
- Conventional current is defined by the direction positive charges will flow
- Direction of electron flow is opposite to direction of conventional current

Resistance

- In materials electrons accelerate in an electric field
- Electrons lose energy when they hit atoms lost energy appears as heat and light
- The result is that electrons drift with constant velocity (superimposed on random thermal motion)
- Resistance is the ratio Voltage/current
 R = V/I

5

Material Conductivity

- Conductors negligible resistance
- Insulators extremely large resistance
- Semiconductors some resistance
- Resistors are devices designed to have constant resistance across a range of voltages

6

Power

 Power = rate of energy dissipation (resistor) or production (generator or voltage source)

$$P = IV$$

For a resistor since I = VR and V= I/R
P = I² R = V²/R

.

Kirchoff's Laws

- Kirchoff's voltage law (KVL)
 - The sum of voltage differences around any loop in a circuit equals 0
 - Equivalently, the voltage between two points is the same no matter what path is traversed
- Kirchoff's current law (KCL)
 - The nett current into a junction in a circuit is 0

9

Applying KVL and KCL

- Need to assign reference directions for voltage and current
- When applying KVL and KCL need to take care of the correct sign (+, -) when adding voltages around a loop (KVL) or currents into a node (KCL)

Equivalent Circuits

- Circuits not identical but from some perspective behave the same
- e.g. Circuit A and B are not identical but by considering R1 and R3 in parallel and making R1' = R1||R3, they are equivalent in determining V2
- Not equivalent in determining I3 but solving circuit B can help to find I3

Input Transducers

- These are devices that produce electric signals in accordance with changes in some physical effect e.g. convert temperature, light level to a voltage level or resistance
- e.g. microphones, strain gauge, photodetectors, ion-selective membranes, thermistors
- Sometimes the definition of transducer is that of a device that converts non-electrical energy to electrical energy

15

Output Transducers

 Devices which convert an electrical quantity into some other physical quantity or effect e.g. relay, loudspeaker, solenoid

Light Dependent Resistors (LDRs)

- Devices whose resistance changes (usually decreases) with light striking it
- (also called photocells, photoconductors)
- Light striking a semiconducting material can provide sufficient energy to cause electrons to break away from atoms.
- Free electrons and holes can be created which causes resistance to be reduced

17

LDRs

- Typical materials used are Cadmium Sulphide (CdS), Cadmium Selenide (CdSe), Lead Sulphide
- With no illumination, resistance can be greater than $1 \text{ M}\Omega$ (dark resistance).
- Resistance varies inversely proportional to light intensity.
- Reduces down to 10-100s ohms
- 100ms/10ms response time

18

- LDRs have a low energy gap
- Operate over a wide wavelengths (some, into infrared)
- Indium antimonide is good for IR.
 When cooled is very sensitive, used for thermal scanning of earth's surface

Capacitors

- A component constructed from two conductors separated by an insulating material (dielectric) that stores electric charge (+Q, -Q)
- As a consequence there is a voltage difference across the capacitor, V
- Capacitance = C = Q/V
- The dielectric material operates to reduce the electric field between the conductors and so allow more charge to be stored for a given voltage

Relays

- A relay is an electromechanical switch used to switch other circuits on or off, usually carrying higher current than the relay coil itself
- Relays offer complete isolation from the circuit they control
- They enable a computer or logic circuit to control motors and other main-operated equipment
- (Adapted from Lofts et al. "Jacaranda Physics 2", 1998, John Wiley & Sons)

26

Relays

- The relay magnetic coil may operate off AC or DC voltage
- In DC use a reverse biased diode to dissipate energy when magnetic field collapses (turn relay off) - otherwise a very large and damaging back emf will be produced

a on

Related devices

- Solenoid linearly actuates a rod shaped device that can be used to control water valves or air-operated systems
- Inductors resist current flow at high frequencies 2222 $X_1 = 2\pi fL$
- Transformers

Semiconductors

- Silicon is used as an example (other semiconductors include Germanium, Gallium Arsenide, Gallium phosphide, indium arsenide, indium phosphide)
- Pure silicon (intrinsic semiconductor)
 - Four valance atoms
 - Crystalline structure
 - Reasonably high resistance

Electrons and holes

- Due to thermal energy some electrons in the valance shell become free
- Create:
 - One free electron +
 - One hole in the valence band that can be filled by electrons from the valance band in an adjacent silicon atom
- Current in silicon can flow due to both movement of electrons and holes

- The reverse process to hole-electron pair creation is called recombination
 - Occurs when a electron and hole meet
 - Facilitated by traps and recombination centres at deformities in crystal
- By adding impurities extra holes or electrons can be introduced - extrinsic semiconductors

31

n-type silicon

- Add donor impurities (e.g. Phosphorus, arsenic, indium) with 5 electrons in the valance band
- As only four electrons can bond with neighbouring silicon atoms one free electron is left
- Increases concentration of free electrons
- Reduces concentration of holes (due to increased chance of recombination)
- Resistance reduced

- p-type silicon is created by adding acceptor impurities which have three valance electrons (e.g. boron)
- This leaves an unbound valance electron in an adjacent silicon atom creating a hole
- Increases concentration of holes
- Reduces concentration of free electrons
- P-type silicon has lower resistance than pure silicon

- n_i = concentration (number/m²) of electrons in pure semiconductor
- p_i = concentration of holes in pure semiconductor
- n = concentration of electrons in doped semiconductor
- p = concentration of holes in doped semiconductor
- (n_i)² = np
- In n-type semiconductor the concentration of electrons is increased and the concentration of holes is decreased
 - electrons are majority carriers
 - holes are minority carriers
- In p-type semiconductor the concentration of holes is increased and the concentration of electrons is decreased
 - holes are majority carriers
 - electrons are minority carriers

4

Energy levels and bands

- In a single silicon atom the valance electrons are at given energy level
- In a crystal, due to Pauli exclusion effect, only two electrons can exist at same energy level (they have opposite spin)
- The single energy level splits into bands of closely spaced energy levels

36

Micro-behaviour - unbiased case

- When P and N region join:
 - Electrons <u>diffuse</u> from the N region to the P region leaving exposed positive donor ions
 - Holes diffuse from P region to N region creating negative acceptor ions
 - This creates a depletion region around the P-N junction with no free electrons and holes
 - The charge around the junction counteracts further diffusion and applies an electric force to cause diffused holes and electrons to <u>drift</u> back to where they came from

Some extra detail

- As electrons diffuse across into the p region the further they travel the more likely they will recombine with holes
 - i.e. electron current becomes hole current in the p region
 - and, vice versa with holes diffusing into the n region
- The + and charge around the depletion region in a reverse-biased diode can be used a capacitor - useful in RF circuits

LEDs

- Light emitting diode
- When an electron moves down from the conduction band to the valence band it loses energy
- In silicon and germanium the energymomentum relationships mean that this energy is lost heat
- In gallium arsenide it produces a photon

- The light intensity is proportional to current
- Pure gallium arsenide produces infrared light
- GaAsP produces red or yellow light
- GaP produces red or green

50

Circuit design using LEDs

- LEDs behave just like normal diodes except that the forward bias voltages are greater (typically 1.8 - 4.0 V)
- A typical forward bias current of 10-20 mA is used.

51

 $I = \frac{9 - 2.0}{680}$ = 10.29 mA

80Ω • 2.0V

Concept of gain

- Amplifiers have an input and an output where the output voltage changes in response to the input voltage. Usually the output is an amplified version the input voltage.
- DefineGain = Output voltage/input voltage
- Gain encompasses the concept of proportionality
 - double input, double output; treble input, treble output etc
- When gain is less than 1 we usually use the term attenuation instead

53

n.b. Vin, Vout on different

scales

Decibels

- Decibels are often used to describe gain
- $db = 20 \log_{10} Voltage Gain = 10 \log_{10} Power Gain$

Volt. Gain	<u>dB</u>	Volt. Gain	dB
10000	80	8	18
1000	60	4	12
200	46	2	6
100	40	1.414 1	3
20	26		0
10	20	0.707	-3
10	20	0.1	-20