Interrupts

Fundamental concept in computation

Interrupt execution of a program to “handle” an event
o Don't have to rely on program relinquishing control

o Can code program without worrying about others

Issues

What can interrupt and when?

Where is the code that knows what to do?

How long does it take to handle interruption?

Can an interruption be, in turn, interrupted?

How does the interrupt handling code communicate its results?
How is data shared between interrupt handlers and programs?

0O 0D 00 0o

CSE 466 - Autumn 2004 Tnterrupts

What is an Interrupt?

Reaction to something in /0O (human, comm link)
Usually asynchronous to processor activities

“interrupt handler” or “interrupt service routine” (ISR)
invoked to take care of condition causing interrupt

o Change value of internal variable (count)

o Read a data value (sensor, receive)

o Write a data value (actuator, send)

Main Program
nsncion1 > ISR
Instruction 2 Save state
Instruction 3 Instruction 1
Instruction 4 Instruction 2

Instruction 3

Restore state
Return from Interrupt

CSE 466 - Autuma 2004 Interrupts

Interrupts

Code sample that does not interrupt
char SPI_SlaveReceive(void)

{
* Wait for reception complete */
while(/(SPSR & (1<<SPIF)))

/* Return data register */
return SPDR;
}

Instead of busy waiting until a byte is received the
processor can generate an interrupt when it sets SPIF
SIGNAL(SIG_SPI) {
RX_Byte = SPDR
}

CSE 466 - Autumn 2004 Tnterrups

Saving and Restoring Context

Processor and compiler dependent

Where to find ISR code?
o Different interrupts have separate ISRs
Who does dispatching?
o Direct
Different address for each interrupt type
Supported directly by processor architecture
o Indirect
One top-level ISR
Switch statement on interrupt type
o A mix of these two extremes?

CSE 466 - Autumn 2004 Tnterrupts

Saving and Restoring Context

How much context to save?

o Registers, flags, program counter, etc.

o Save all or part?

o Agreement needed between ISR and program

Where should it be saved?

o Stack, special memory locations, shadow registers, etc.

o How much room will be needed on the stack?

o Nested interrupts may make stack reach its limit — what then?

Restore context when ISR completes

CSE 466 - Aur

Tnterrupts

Ignoring Interrupts

Can interrupts be ignored?
o It depends on the cause of the interrupt
o No, for nuclear power plant temperature warning
o Yes, for keypad on cell phone (human timescale is long)
When servicing another interrupt
o Ignore others until done
o Can't take too long — keep ISRs as short as possible
Just do a quick count, or read, or write — not a long computation
Interrupt disabling
o Will ignored interrupt “stick”?
Rising edge sets a flip-flop
o Or will it be gone when you get to it?
Level changes again and its as if it never happened
o Don't forget to re-enable

CSE 466 - Autumn 2004 Interrupts

Prioritizing Interrupts

= When multiple interrupts happen simultaneously
o Which is serviced first?
o Fixed or flexible priority?
= Priority interrupts
o Higher priority can interrupt
o Lower priority can't
= Maskable interrupts
o “don’t bother me with that right now”
o Not all interrupts are maskable, some are non-maskable

CSE 466 - Autamn 2004 Tnterrupts

Interrupts in the ATmegal6

= External interrupts
o From 1/O pins of microcontroller
= Internal interrupts
o Timers
= Output compare
= Input capture
= Overflow
o Communication units
= Receiving something
= Done sending
a ADC
= Completed conversion

CSE 466 - Autuma 2004 Interrupts §

Interrupt Jump Vector Table

Mblvess Lalels Cod

g waser

= Fixed location s bl

Chain of Events on Interrupt

= Finish executing current instruction
= Disable all interrupts Cl
= Push program counter on to stack
= Jump to interrupt vector table -
= Jump to start of complete ISR
= Save any context that ISR may otherwise change
o Registers and flags must be saved within ISR and restgréd before it
returns — this is very important!

= Re-enable interrupts if nested interrupts are ok
= Complete ISR’s code

= Re-enable interrupts upon return
= Jump back to next instruction before interruption

CSE 466 - Autumn 2004 Tnterrupts 10

in memory to find = i
first instruction for e
each type of s
interrupt -
o
= Only room for one {2 el
instruction i bl
o JMP to location by il
of complete ISR el 2 A
S —
i © Buible itearnupts
T o 00T e 5
Shared Data Problem

= When you use interrupts you create the opportunity for
multiple sections of code to update a variable.

This might cause a problems in your logic if an interrupt
updates a variable between two lines of code that are
directly dependent on each other (e.g. if statement)

= One solution is to create critical sections where you
disable the interrupts for a short period of time while you
complete your logic on the shared variable

cli();
..... critical section code goes here.....
sei();

CSE 466 - Auramn 2004 Tnterrupts

External Interrupts

General Internapt Control
ACH

= Special pins: INTO, INT1, INT2
o Can interrupt on edge or level

= Can interrupt even if set to be output pins
o Implements “software interrupts” by setting output

MU Control Register The ML Cori Figester contains coneol bas for nerrut sense contol and generst
MEUCR ML functons

15C11_| ISC10 | Deseription
0 0 The low level of INT1 generates an interrupt request
0 1 Any logical change on INT1 generates an interrupt request
1 0 The falling edge of INT1 generates an intemrupt request
1 1 The rising edge of INT1 generates an interrupt request.

CSE 466 - Autumn 2004 Interrupts 12

Closer Look at a Timer/Counter

= Timer0/Counter0
a Clear timer on compare match (auto reload)
a Prescaler (divide clock by up to 1024)
o Overflow and compare
match interrupts
o Registers
= Configuration
= Count value
= Output compare value 3
]

CSE 466 - Autumn 2004 Tnterrupts 5]

‘ Timer/Counter Registers

= Timer/Counter
Control Register
TCCRO

‘CSE 466 - Autumn 2004 Tnterrupts i

‘ Timer/Counter Registers (cont’d)

= Timer/Counter
Control Register
TCCRO
* Bit 5:4 - COMO01:0: Compare Match Output Mode

These bits contral the Culpul Compare pin (G0} behavior, If one or bath of the
COMDT:D bits ane o1, the OCO oulpul overnices the normal port functionalty of the 110
P it s connected 10 However, note that the Data Direchon Register (DDR) bt come-
spanding 10 the CCO pin must be Set n order 10 enable th outpul dives

d 10 the pn, the function of the COMO1 0 bits depen e
ble 36 shows the COMO 1.0 bt funchionalty when the WGMO1:0
@ S8t to & nomal of CTC mode (non-PWM),

WG
bits

Table 39. Compare Chuiput Mode, non FWM Mode
coMaT COMID Descripbion
0 NOERE PO operalon. OCE BConnected
0
'
1

Toge OCO on Eompare mateh

Cleas 0G0 on compare match

L
1
o
1

Set OCO o compans match

CSE 466 - Autumn 2004 Tnterrups 15

‘ Timer/Counter Registers (cont’d)

= Timer/Counter
Control Register
TCCRO + Bit 2:0 - £502:0; Clock Selact

The three Clock Select bits sefect the dock 5ourte 1 be used by the Timen'Counlos

Table 42. Clock Select Bit Description

302 | CS01 | C500 | Descripten

[] [] 0| Mo clocx sounce {TimerCounter stopped)

] [] 1| clkyg/iho prescaing)

] 1 0| clkygB (From prescaer

] 1| ks {From prescaser)

1 [} [}

1 [] 1

1 1 © | External ciock source on TO pin. Clock on faing eoge
1 1| External ciock source on TD pin. Clock on riseg edge

H axtamal pin modes ore used for the Timer Countet
clock tha counter even if the pan s configurad as an output
conral of he courtng

ransisons on the TO pin wil
is faatune aliows softwars

CSE 466 - Autumn 2004 Tnterrupts 16

‘ Timer/Counter Registers (cont’d)

TineeiCountes Registes -
TCNTD - : . . .

[T] sewe
st R o
im0 o " s
Output Compars Register =
ok . L .
[T] oom

TemeriCounter Intimupt Mask

Fsgisser - TRSK : . ' . s . . -
"
Timer/Countes infermupt Flag
Register - TIFR ™ ¥ . [[L]
I e
Pt L ™ v L Lo
CSE 466 - Auramn 2004 Tnterrupts 7

Setting Register Values

= Defined names for each register and bit
o Set timer to clear on match
o Set prescaler to 1024

TCCRO = (1<<WGMO1) | (1<<CS02) | (1<<CS00);

o

Set count value to compare against

OCRO = 150;

o

Set timer to interrupt when it reaches count

TIMSK = (1<<OCIEO);

CSE 466 - Autumn 2004 Tnterrupts 18

Writing an Interrupt Handler in C

Set and clear interrupt enable

o sei();

o cli();

Interrupt handler

o SIGNAL(SIG_OUTPUT_COMPAREOQ)
{

}
Setting I/O registers
o TCCRO = (1<<WGMO1) | (1<<CS02) | (1<<CS00);
Enabling specific interrupts
o TIMSK = (1<<OCIEQ);

i++;

CSE 466 - Autumn 2004 Tnterrupts g

Analog to digital conversion

Use charge-redistribution technique
o no sample and hold circuitry needed
o even with perfect circuits quantization error occurs

Basic capacitors
o sum parallel capacitance

IR

CSE 466 - Autuma 2004 Interrupts 0

Analog to digital conversion (cont’d)

Two reference voltage

o mark bottom and top end of range of analog values that can be
converted (V, and V)

o voltage to convert must be within these bounds (Vy)

Successive approximation

o most approaches to A/D conversion are based on this

o 8to 16 bits of accuracy

A-to-D — sample

During the sample time the top plate of all capacitors is
switched to reference low V

Bottom plate is set to unknown analog input Vy
Q=CVv

Qs =16 (Vx- V)

CSE 466 - Autumn 2004 Tnterrupts 22

Vv
Approach H
o sample value
o hold it so it doesn’t change — Vx
o successively approximate
o report closest match
66 R 2007 g E—
A-to-D — hold
Hold state using logically controlled analog switches
o Top plates disconnected from V
o Bottom plates switched from V, to V|
Qu=16 (V. -V)
o conservation of charge Qg = Q4 v
a 16 (Vy-V) =16 (V. - V) H
o Vy -V, =V, -V, (output of op-amp)
— VX
—

CSE 466 - Autumn 2004 Tnterrupts 23

A-to-D — successive approximation

Each capacitor successively switched from V_to V,,
o Largest capacitor corresponds to MSB

Output of comparator determines bottom plate
voltage of cap

o >0 :remain connected to V,

o <O0:returntoV,
o—{l 0—{1 0—{1 ()—{1 lVL
Vi

N

CSE 466 - Autumn 2004 Interrupts 2

A-to-D example - MSB

= Suppose V, = 21/32 (V,,- V,) and already sampled

= Compare after shifting half of capacitance to V,,
0V, goes up by +8/16 (V,-V)) - 8/16 (V,-V)) = + 8/16 (V,; - V)
o original V| -V, goes down and becomes
9 V- (Vi+.5(Vy-V)) =V - V- 5(Vy- V)

= Output>0

A-to-D example - (MSB-1)

= Compare after shifting another part of cap. to V,,
0V, goes up by + 4/16 (V,-V)) - 4/16 (V.-V)) = + 4/16 (V- V)
o original V| -V, goes down and becomes
O V- (Vi+ 25 (V- V) =V -V, - 25 (V- V)

= Output < 0 (went too far)

v, Vi
8
Vx
— 5 (Vy- V)
V; (next)
—_—,
CSE 466 - Autumn 2004 Interrupts 25
A-to-D example - (MSB-2)
= Compare after shifting another part of cap. to V,,
oV, goes up by +2/16 (V-V) - 2/16 (V-V)) = + 2/16 (Vy; - V)
o original V-V, goes down and becomes
0 V- (Vi +.125 (V- V) =V - V- 125 (V- V)
= Output>0
V,
H Vi
—Vy
125 (V- V)
: : —] Vi (prev)
VL VL VI (nZXT)z‘_ VL

CSE 466 - Autumn 2004 Tnterruprs

A-to-D example final result

= Input sample of 21/32
= Gives result of 1010 or 10/16 = 20/32
= 3% error

CSE 466 - Auramn 2004 Tnterrupts

Vy Vi
—— Vy
225 (V- V)
— V: (prev)
e \"
VIL (next)
ST 66 A 2007 Tnterrupts %
A-to-D example - LSB
= Compare after shifting another part of cap. to V,,
o V,goes up by + 1/16 (V,-V)) - 1/16 (V.-V)) = + 1/16 (V- V)
o original V-V, goes down and becomes
0 V- (V,+.0625 (V- V) =V, -V, - .0625 (V- V,)
= Output < 0 (went too far again)
V
H VH
— Vy
—— VL
CSE 466 - Aucumn 2004 Tnterrapts
A-to-D Conversion Errors
Offset Emmes Integral Non-neatiy (INL)
el : Cusp o z
7
G
':,/
= 4 ik

- : Vg et

166 - Autumn 2004 Interrupts 30

Closer Look at A-to-D Conversion

= Needs a comparator

and a D-to-A converter
= Takes time to do
successive
approximation
Interrupt generated
when conversion is
completed

A-to-D Conversion on the ATmegal6

= 10-bit resolution (adjusted to 8 bits as needed)
= 65-260 usec conversion time
= 8 multiplexed input channels
= Capability to do differential conversion
o Difference of two pins
o Optional gain on differential signal (amplifies difference)
= Interrupt on completion of A-to-D conversion
u 0-V¢c input range
= 2*LSB accuracy (2 * 1/1024 = ~0.2%)

o Susceptible to noise — special analog supply pin (AVCC) and
capacitor connection for reference voltage (AREF)

SE 466 - Auramn 2004 Tnterrupts

‘CSE 466 - Autumn 2004 Tnterrupts

A-to-D Conversion (cont’d)

AD< Wultipleer Selection

Reggister — ADMUX -

TR TR T e T TS e
I-nluAlx -.\qulTWlx l.|I

= Bit 7:6 - REF§1:0: Ruborance Selection Bits
These bis salect e voitage relerance for fe AL, 35 shown n Table 51, o thess bis,

Rv—y
esenglate (ADIF in ADCSF in st} Tha ilersc voltage il
etemal refesence woRage o Doy sppled 1 the

Table #3. Votage Anterancs Setectons for ADG

TREFST | REFSH | Vohage Reterence Soecion

[0| AREF, imsamal voof rmad o
[AVCE Wit auherndl capactor a1 ARLF pin

v
0| R
'

réeal 2 14 VoRage Aeberence wih sxtemal cacach 3 AREF pn

* Bin%- ADLAR: ADC Lot Adjst Result

adsisted Changing tha ADLAR bt wil aflect ihe ADC Data R
regatdess of any cepaing comersicns. For a compiete descrphen
ADYC Dt Fingiabr — ADICL and ADCH" 0m page 218

© B - MK Rk Db s G Sotecsion B

A-to-D Conversion (cot

Rk i

= Single-ended or differential
o 1 of 8 single-ended
o ADCx — ADC1 at 1x gain
o ADC{0,1} — ADCO at 10x
o ADC{0,1} — ADCO at 200x
o ADC{2,3} - ADC2 at 10x
o ADC{2,3} — ADC3 at 200x
a ADC{0,1,2,3,4,5} - ADC2 at 1x

CSE 466 - Autumn 2004 Tnterrupts

CSE 466 - Autumn 2004 Tnterrupts

A-to-D Conversion (cont’d)

Thee ADC Diata Reaginter -
ADCL ared ADCH

ADLAR »

ADLAR = 1

A-to-D Conversion (cont’d)

ADC Contrel and Statis
Register & - ADCSRA - . . . i 3 3 .

* BT ADEN: ADC Ensbls
* B 6 - ADSC: ADC Start Comversion

+ i - ADATE: ADE At Trigger Enable

+ B d - ADIF; ADC Interrupt Flag

* B 3 - ROIE: ADC Interrupt Enable

* ity 20 - ADPSE: ADE Prascaler Seloct Bits

CSE 466 - Autamn 2004 Tnterrupts

ADF3T ADPEY AoF8e Coinion Factor
] g []]
5] [4
]] ' '
1 & [1
1 [[o
CSE 466 - Autumn 2004 Tnterrupts 36

A-to-D Conversion (cont’d)

Speelal Functioni0 Regite -
SFIOR

15~ ADTSZ:8: ADC At Trigger Sowcs

H ADATE 1 ADCSRA i weshen 1.0, the vakse of fese bis selects mhch source wi
Wegge a0 ADC commries f ADATE i ciesred, B ADTS0 seingn wil e 10

acain 3 prcies sdgs o s Igger st § ADEN 1 ADCSRA B 3
Swechg o Fres R s {ADTSIR 0} wl ot cone 3
s ADC It Fiy

Aua Trgger Source Selecton

ADTSE | ADTS1 | ADTSO | Tigwer Sowee
s | o § | Free Ruenegrone
o o v | Avug Comparuce
T T | Exvwral vt Fegt
" [
v [
v 0

st b writhen ko peres when SFIOR

CSE 466 - Autumn 2004 Tnterrupts

A-to-D Conversion (cont’d)

‘CSE 466 - Autumn 2004 Tnterrupts 3

Writing an Interrupt Handler in C (again)

= Ensure main program sets up all registers
Enable interrupts as needed
Enable global interrupts (SEI)
Write handler routine for each enabled interrupt
o What if an interrupt occurs and a handler isn't defined?
= Make sure routine does not disrupt others
o Data sharing problem
o Save any state that might be changed (done by compiler)
= Re-enable interrupts upon return
a done by compiler with RETI

CSE 466 - Autumn 2004 Tnterrups

Power modes

= Processor can go to “sleep” and save power

= Different modes put different sets of modules to sleep

o Which one to use depends on which modules are needed to
wake up processor

o Timers, external interrupts, ADC, serial communication lines, etc.
= set_sleep_mode (mode);
= sleep_mode ();

CSE 466 - Autumn 2004 Tnterrupts 0

Power modes (cont’d)

MCU Contred Regiater - The MCU Contiot Regat
MCUCR '

taars, coaeiy b for powes managesent

SMZ. 0 Sleep Mode Select Bits 2. 1, and &
These ity salect between the bin avalable wieep modes 35 thown = Table 13

Table 13. Sleep Mode Seiect

T au1 i
]
2

St Mode

ADC Moaw Recumon

P owm.

)

Asservea
et
Ty

al=|al=|=|=|=|§

' £ curetes Fanfy

T D T e ——————————————
e

= BiS - S Slewp Enable
The SE st st b e
SLEEP isairucton s anecued oaoamwu.o....‘m.m Bod inlees kin
B programmans. 0 1commended 1 wris T Seep ane
ot ek e sopcusbion of the SLEEP eyl Lot L
g

CSE 466 - Autamn 2004 Tnterrupts

Power modes (cont’d)

= Wake up sources and active clocks

Activs Choch dormaans Cacatens Wk S0urces
wi| e o
[, M Chock | e (W1| Addens | o] EEPROM e
[o N T o e R o e
- DK x x] x X [l x| x
AL
Mmse | x
x| = x x x x * x
cion
Power ' -
[y
o ¥ . e x| x
Stardty x | %
e
w2 ¥ x = el x| x
Stand
==
CSE 466 - Autumn 2004 Tnterrupts 2

