
1

CSE 466 - Autumn 2004 Flock Design 1

CSE 466: Course Project

Complete a large project that embodies 
the major course topics 
Project should be simple but expandable
The project should include:

Multiple device communication 
Deal with constrained resources
Control hardware by directly manipulating the I/O
Introduce an embedded OS
Participate in a multi-agent project – team effort
Use current technology

CSE 466 - Autumn 2004 Flock Design 2

The Flock

Two week project to tie together everything we’ve learned in 466
Programming microcontrollers
Wireless radio communication
Embedded operating systems

A piece of “performance art”
Allows nodes programmed by different students to work together
Exposes some problems of scale in building sensor networks

CSE 466 - Autumn 2004 Flock Design 3

Basic Idea of the Flock Project

Each node (“bird”) sings a song 
It then listens to its neighbors to hear what they sang
It makes a decision as to which song to sing next

This can lead to an emergent behavior – property of the group
We’ll be trying for an effect that propagates a song around the flock

If it is startled (by a shadow cast on its light sensor), then it makes a 
“scared” noise and informs its neighbors who will do the same
Room for experimentation

New songs – not just birds
New algorithms for determining next song
Using time of day and other sensor data in the algorithm
Any other ideas you come up with

CSE 466 - Autumn 2004 Flock Design 4

Flock Process Flow: 

A) INITIALIZATION STATE: (only used when birdie is first turned on)
set SONG = Local # % 16 (choose one of 16 songs)
Wait to receive a packet of type AdjustGlobals then go to C

B) WAIT STATE
Wait to receive a packet of type AdjustGlobals or SingSongN
IF (AdjustGlobals) set SONG = random song; go to C
IF (SingSongN) set SONG = received in message; go to D

C) CLEAR STATE
With radio off, clear FIFO data (all historical data)
Wait for random amount of time (1000- 4000 milliseconds)

D) SING STATE
With radio off, sing birdiesong(SONG)
If got to SING STATE from a SingSongN packet goto WAIT STATE after sending a SangSong 
message

E) Start the radio and set listen timer for random t є [minListen, maxListen] msec
F) Set the send timer for minListen/2 milliseconds and send the "I sang song" 
message
G) When listen timer runs out, decide next song
H) Repeat steps D through H.

CSE 466 - Autumn 2004 Flock Design 5

Flock Details: Sing

Turn the radio off– we can’t handle 416 usec interrupts 
while generating sound
Sing the song using Timer1 for PWM and Timer2 for 
tempo and ADSR control
Turn the radio on and do any housekeeping required
We’ll get details of sound generation next Monday from 
Bruce Hemingway – the creator of the flock

CSE 466 - Autumn 2004 Flock Design 6

Sound Generation

Used PWM with low pass 
filter to generate sound
Taxes the systems memory and CPU

Wave and sequence tables used to generate the sound take up a 
large part of memory
Uses many processor cycles, requiring efficient coding

We will use a 15.625kHz sampling rate on the mica2dots (4MHz)
Processing has to complete in 256 cycles

Timing errors are easily detectable (<10 ms)
Gives quick feedback on program accuracy
Code inaccuracies are generally audible

Am
pl

itu
de

Attack Decay Sustain Release

S
us

ta
in

 le
ve

l



2

CSE 466 - Autumn 2004 Flock Design 7

Flock Details: Listen

Arriving packets need to be time-stamped
Packets from Node 0 must be specially treated – they 
may contain global parameters
Arriving packets must be strength-stamped for RSSI 
value – special radio stack required

CSE 466 - Autumn 2004 Flock Design 8

Flock Details: Decide

Need algorithm for what song to sing next
Similar to Cellular Automata, like Conway’s Game of Life

Goals:
Sing the same song for a little while
Songs start, then spread, then die out

CSE 466 - Autumn 2004 Flock Design 9

What are Cellular Automata?

Computer simulations which emulate the laws of nature
Rough estimation – no precision

Discrete time/space logical universes
Complexity from simple rule set

Reductionist approach

Deterministic local physical model
Ensemble does not have easily reproducable results due to 
randomization and limits of communication

CSE 466 - Autumn 2004 Flock Design 10

History

Original experiment created to see if simple rule system 
could create “universal computer”
Universal computer (Turing): a machine capable of 
emulating any kind of information processing through 
simple rule system
Late 1960’s: John Conway invents “Game of Life”

CSE 466 - Autumn 2004 Flock Design 11

Game of Life

Simplest possible universe capable of computation
Basic design: rectangular grid of “living” (on) and “dead” 
(off) cells
Complex patterns result from simple structures
In each generation, cells are governed by three simple 
rules
Which patterns lead to stability? To chaos?

CSE 466 - Autumn 2004 Flock Design 12

Simulation Goals

Avoid extremes: patterns that grow too quickly 
(unlimited) or patterns that die quickly
Desired behavior:

No initial patterns where unlimited growth is obvious through 
simple proof
Should discover initial patterns for which this occurs
Simple initial patterns should grow and change before ending by:

fading away completely
stabilizing the configuration
oscillating between 2 or more stable configurations

Behavior of population should be relatively unpredictable



3

CSE 466 - Autumn 2004 Flock Design 13

Conway’s Rules

Death: if the number of surrounding cells is less than 2 
or greater than 3, the current cell dies
Survival: if the number of living cells is exactly 2, or if the 
number of living cells is 3 (including the current cell), 
maintain status quo
Birth: if the current cell is dead, but has three living cells 
surrounding it, it will come to life

CSE 466 - Autumn 2004 Flock Design 14

For Each Square . . .

Look at nearest neighbors (8 of them)
256 possible states (28)
Decide on square’s next state (dead/alive, on/off)

CSE 466 - Autumn 2004 Flock Design 15

The Rules for Life

If a square is black (“on”) then it will be black at the next 
step if 2 or 3 of its neighbouring squares are black
A white (“off”) square will become black only if it has 
exactly 3 black neighbouring squares
Otherwise a square will be white the next step 
(overcrowded or lonely)

CSE 466 - Autumn 2004 Flock Design 16

Examples

We can have birth…

Or death…

A nice implementation is at: 
http://www.math.com/students/wonders/life/life.html

CSE 466 - Autumn 2004 Flock Design 17

Types of behaviour in the Game of Life…

Still life objects – unchanging 
(e.g. four-block)
Simple repeating patterns 
(oscillations)
Part of the system can leave the rest and travel 
(movement - gliders)
The system can die out completely
The system grows randomly before stabilising to a 
predictable behaviour 
The system grows forever 
(quite rare and difficult to find)

CSE 466 - Autumn 2004 Flock Design 18

Chaos…

All behaviour in the Game of Life is chaotic – it is very 
sensitive to the starting state and is completely altered if 
the system changes a little (e.g. just like the weather)



4

CSE 466 - Autumn 2004 Flock Design 19

Flock Details: Decide

Goals:
Sing the same song for a little while
Songs start, then spread, then die out

Algorithm?
Determine nearest songs
If our song = any of nearest n, then repeat song
If all same, switch to different song
If none same, switch to different song

CSE 466 - Autumn 2004 Flock Design 20

Flock Details: Decide

Algorithm?
Determine nearest songs
If our song = any of nearest n, then repeat song
If all same, switch to different song
If none same, switch to different song

How do we evaluate this?
How can we predict it’s effectiveness?

CSE 466 - Autumn 2004 Flock Design 21

For Wednesday

Try to figure out a way of determining whether 50 birds
will ever sing the same song at approximately the same 
time
Make three suggestions for improvement to any aspect 
of the flow or decision algorithm to improve chances of 
accomplishing this
Do not consider trivial algorithms

CSE 466 - Autumn 2004 Flock Design 22

The Concert – Dec 10 – 9:30AM

Final demo for the class is a 
concert
Each student has a mote to 
contribute (35 motes)
Same rules, different code in 
each mote 
The motes have to “qualify” 

We will have testing scripts to
simulate the flock and eliminate 
nodes that may cause problems
Used for grading projects


