
1

MSP430 Interrupts

CSE 466 Interrupts 2

Interrupts

  Fundamental concept in computation
  Interrupt execution of a program to “handle” an event

  Don’t have to rely on program relinquishing control
  Can code program without worrying about others

  Issues
  What can interrupt and when?
  Where is the code that knows what to do?
  How long does it take to handle interruption?
  Can an interruption be, in turn, interrupted?
  How does the interrupt handling code communicate its results?
  How is data shared between interrupt handlers and programs?

2

CSE 466 Interrupts 3

What is an Interrupt?

  Reaction to something in I/O (human, comm link)
  Usually asynchronous to processor activities
  “interrupt handler” or “interrupt service routine” (ISR)

invoked to take care of condition causing interrupt
  Change value of internal variable (count)
  Read a data value (sensor, receive)
  Write a data value (actuator, send)

Main Program
Instruction 1
Instruction 2
Instruction 3
Instruction 4
…..

ISR
Save state
Instruction 1
Instruction 2
Instruction 3
…..
Restore state
Return from Interrupt

CSE 466 Interrupts 4

Interrupts

  Code sample that does not interrupt
char SPI_SlaveReceive(void)
{
/* Wait for reception complete */
while(!(SPSR & (1<<SPIF)))
;
/* Return data register */
return SPDR;
}

  Instead of busy waiting until a byte is received the
processor can generate an interrupt when it sets SPIF

SIGNAL(SIG_SPI) {
 RX_Byte = SPDR

}

3

CSE 466 Interrupts 5

Saving and Restoring Context

  Processor and compiler dependent

  Where to find ISR code?
  Different interrupts have separate ISRs

  Who does dispatching?
  Direct

  Different address for each interrupt type
  Supported directly by processor architecture

  Indirect
  One top-level ISR
  Switch statement on interrupt type

  A mix of these two extremes?

CSE 466 Interrupts 6

Saving and Restoring Context

  How much context to save?
  Registers, flags, program counter, etc.
  Save all or part?
  Agreement needed between ISR and program

  Where should it be saved?
  Stack, special memory locations, shadow registers, etc.
  How much room will be needed on the stack?
  Nested interrupts may make stack reach its limit – what then?

  Restore context when ISR completes

4

CSE 466 Interrupts 7

Ignoring Interrupts

  Can interrupts be ignored?
  It depends on the cause of the interrupt
  No, for nuclear power plant temperature warning
  Yes, for keypad on cell phone (human timescale is long)

  When servicing another interrupt
  Ignore others until done
  Can’t take too long – keep ISRs as short as possible

  Just do a quick count, or read, or write – not a long computation
  Interrupt disabling

  Will ignored interrupt “stick”?
  Rising edge sets a flip-flop

  Or will it be gone when you get to it?
  Level changes again and its as if it never happened

  Don’t forget to re-enable

CSE 466 Interrupts 8

Prioritizing Interrupts

  When multiple interrupts happen simultaneously
  Which is serviced first?
  Fixed or flexible priority?

  Priority interrupts
  Higher priority can interrupt
  Lower priority can’t

  Maskable interrupts
  “don’t bother me with that right now”
  Not all interrupts are maskable, some are non-maskable

5

CSE 466 Interrupts 9

Interrupts in the MSP430

  External interrupts
  From I/O pins of microcontroller

  Internal interrupts
  Timers

  Output compare
  Input capture
  Overflow

  Communication units
  Receiving something
  Done sending

  ADC
  Completed conversion

CSE 466 Interrupts 10

Chain of Events on Interrupt

Automatic

RETI

Compiler

6

CSE 466 Interrupts 11

Shared Data Problem

  When you use interrupts you create the opportunity for
multiple sections of code to update a variable.

  This might cause a problems in your logic if an interrupt
updates a variable between two lines of code that are
directly dependent on each other (e.g. if statement)

  One solution is to create critical sections where you
disable the interrupts for a short period of time while you
complete your logic on the shared variable

 clear (GIE) bit ;
 …..critical section code goes here…..
 set (GIE) bit ;

Interrupts

  Execution of a program proceeds predictably, with
interrupts being the exception

  Interrupts are usually generated by hardware
  Processor stops what it is doing,
  Stores enough information to later resume,
  Executes an interrupt service routine (ISR),
  Restores saved information,
  Resumes execution.

  An interrupt is an asynchronous signal indicating
the need for attention

CSE 466 MSP430 Interrupts 12

7

Interrupts

  Interrupts preempt normal code execution
  Interrupt code runs in the foreground
  Normal (e.g. main()) code runs in the background

  Interrupts can be enabled and disabled
  Globally
  Individually on a per-peripheral basis
  Non-Maskable Interrupt (NMI)

  The occurrence of each interrupt is unpredictable

  When an interrupt occurs
  Where an interrupt occurs

  Interrupts are associated with a variety of on-chip and
off-chip peripherals.
  Timers, Watchdog, D/A, Accelerometer
  NMI, change-on-pin (Switch)

CSE 466 MSP430 Interrupts 13

Interrupts

  Interrupts commonly used for
  Urgent tasks w/higher priority than main code
  Infrequent tasks to save polling overhead
  Waking the CPU from sleep
  Call to an operating system (software interrupt).

  Event-driven programming
  The flow of the program is determined by events—i.e.,

sensor outputs or user actions (mouse clicks, key
presses) or messages from other programs or threads.

  The application has a main loop with event detection
and event handlers.

CSE 466 MSP430 Interrupts 14

8

Interrupt Flags

  Each interrupt has a flag that is raised (set) when
the interrupt occurs.

  Each interrupt flag has a corresponding enable bit
– setting this bit allows a hardware module to
request an interrupt.

  Most interrupts are maskable, which means they
can only interrupt if
1) enabled and
2) the general interrupt enable (GIE) bit is set in the

status register (SR).

CSE 466 MSP430 Interrupts 15

Interrupt Vectors

  The CPU must know where to fetch the next
instruction following an interrupt.

  The address of an ISR is defined in an interrupt
vector.

  The MSP430 uses vectored interrupts where
each ISR has its own vector stored in a vector
table located at the end of program memory.

  Note: The vector table is at a fixed location
(defined by the processor data sheet), but the
ISRs can be located anywhere in memory.

CSE 466 MSP430 Interrupts 16

9

MSP430 Memory

  Unified 64KB continuous memory map
  Same instructions for data and peripherals
  Program and data in Flash or RAM with no

restrictions
  Designed for modern programming techniques

such as pointers and fast look-up tables

CSE 466 MSP430 Interrupts 17

Serving Interrupt Request

CSE 466 MSP430 Interrupts 18

 0100 0011 0001 0101

user program
1111 1000 0000 0000

interrupt vector

 0001 0011 0000 0000

interrupt service routine

RETI

0xF800

1.  Lookup interrupt vector for
ISR starting address.

2.  Store information (PC and
SR on Stack)

3.  Transfer to service routine.
4.  Restore information
5.  Return (RETI: get old

PC from stack).

10

MSP430x2xx Interrupt Vectors

INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT ADDRESS SECTION PRIORITY
Power-up
External reset
Watchdog

PORIFG
RSTIFG
WDTIFG

Reset 0xFFFE .reset 15, highest

NMI
Oscillator fault
Flash memory violation

NMIIFG
OFIFG
ACCDVIFG

Non-maskable 0xFFFC .int14 14

Timer_B3 TBCCR0 CCIFG Maskable 0xFFFA .int13 13

Timer_B3 TBCCR1 CCIFG
TBCCR2 CCIFG, TBIFG Maskable 0xFFF8 .int12 12

0xFFF6 .int11 11
Watchdog Timer WDTIFG Maskable 0xFFF4 .int10 10
Timer_A3 TACCR0 CCIFG Maskable 0xFFF2 .int09 9

Timer_A3 TACCR1 CCIFG,
TACCR2 CCIFG, TAIFG Maskable 0xFFF0 .int08 8

USCI_A0/USCI_B0 Rx UCA0RXIFG, USB0RXIFG Maskable 0xFFEE .int07 7
USCI_Z0/USCI_B0 Tx UCA0TXIFG, UCB0TXIFG Maskable 0xFFEC .int06 6
ADC10 ADC10IFG Maskable 0xFFEA .int05 5

0xFFE8 .int04 4
I/O Port P2 P2IFG.0 – P2IFG.7 Maskable 0xFFE6 .int03 3
I/O Port P1 P1IFG.0 – P1IFG.7 Maskable 0xFFE4 .int02 2

0xFFE2 .int01 1
0xFFE0 .int00 0

CSE 466 MSP430 Interrupts 19

Higher address = higher priority

MSP430F2274 Address Space

CSE 466 MSP430 Interrupts 20

Byte 8-bit Special Function Registers 0x000F
0x0000 16

Byte 8-bit Peripherals Modules 0x00FF
0x0010 240

Word 16-bit Peripherals Modules 0x01FF
0x0100 256

Word/Byte Stack
0x05FF

0x0200
1KB SRAM

Word/Byte Program Code
0xFFBF

0x8000

Word Interrupt Vector Table 0xFFFF
0xFFC0

32KB Flash

Access Description Address Size Memory

11

Processing an Interrupt…

1)  Current instruction completed
2)  MCLK started if CPU was off
3)  Processor pushes program counter on stack
4)  Processor pushes status register on stack
5)  Interrupt w/highest priority is selected
6)  Interrupt request flag cleared if single sourced
7)  Status register is cleared

  Disables further maskable interrupts (GIE cleared)
  Terminates low-power mode

8)  Processor fetches interrupt vector and stores it in the
program counter

9)  User ISR must do the rest!

CSE 466 MSP430 Interrupts 21

Interrupt Stack

CSE 466 MSP430 Interrupts 22

12

Interrupt Service Routines

  Look superficially like a subroutine.
  However, unlike subroutines

  ISR’s can execute at unpredictable times.
  Must carry out action and thoroughly clean up.
  Must be concerned with shared variables.
  Must return using reti rather than ret.

  ISR must handle interrupt in such a way that the
interrupted code can be resumed without error
  Copies of all registers used in the ISR must be saved

(preferably on the stack)

CSE 466 MSP430 Interrupts 23

Interrupt Service Routines

  Well-written ISRs:
  Should be short and fast
  Should affect the rest of the system as little as

possible
  Require a balance between doing very little – thereby

leaving the background code with lots of processing –
and doing a lot and leaving the background code with
nothing to do

  Applications that use interrupts should:
  Disable interrupts as little as possible
  Respond to interrupts as quickly as possible

CSE 466 MSP430 Interrupts 24

13

Interrupt Service Routines

  Interrupt-related runtime problems can be
exceptionally hard to debug

  Common interrupt-related errors include:
  Failing to protect global variables
  Forgetting to actually include the ISR - no linker error!
  Not testing or validating thoroughly
  Stack overflow
  Running out of CPU horsepower
  Interrupting critical code
  Trying to outsmart the compiler

CSE 466 MSP430 Interrupts 25

Returning from ISR

  MSP430 requires 6 clock cycles before the ISR
begins executing
  The time between the interrupt request and the start

of the ISR is called latency (plus time to complete
the current instruction, 6 cycles, the worst case)

  An ISR always finishes with the return from
interrupt instruction (reti) requiring 5 cycles
  The SR is popped from the stack

  Re-enables maskable interrupts
  Restores previous low-power mode of operation

  The PC is popped from the stack
  Note: if waking up the processor with an ISR, the new

power mode must be set in the stack saved SR
CSE 466 MSP430 Interrupts 26

14

CSE 466 MSP430 Interrupts 27

Return From Interrupt

  Single operand instructions:

  Emulated instructions:

Mnemonic Operation Description
PUSH(.B or .W) src SP-2→SP, src→@SP Push byte/word source on stack
CALL dst SP-2→SP, PC+2→@SP

dst→PC
Subroutine call to destination

RETI TOS→SR, SP+2→SP
TOS→PC, SP+2→SP

Return from interrupt

Mnemonic Operation Emulation Description
RET @SP→PC

SP+2→SP
MOV @SP+,PC Return from subroutine

POP(.B or .W) dst @SP→temp
SP+2→SP
temp→dst

MOV(.B or .W) @SP
+,dst

Pop byte/word from stack to
destination

Summary

  By coding efficiently you can run multiple peripherals at
high speeds on the MSP430

  Polling is to be avoided – use interrupts to deal with each
peripheral only when attention is required

  Allocate processes to peripherals based on existing (fixed)
interrupt priorities - certain peripherals can tolerate
substantial latency

  Use GIE when it’s shown to be most efficient and the
application can tolerate it – otherwise, control individual IE
bits to minimize system interrupt latency.

  An interrupt-based approach eases the handling of
asynchronous events

CSE 466 MSP430 Interrupts 28

15

CSE 466 MSP430 Interrupts 29

// MSP430F20x3 Demo - SD16A, Sample A1+ Continuously, Set P1.0 if > 0.3V
#include <msp430x20x3.h>

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
 P1DIR |= 0x01; // Set P1.0 to output direction
 SD16CTL = SD16REFON + SD16SSEL_1; // 1.2V ref, SMCLK
 SD16INCTL0 = SD16INCH_1; // A1+/-
 SD16CCTL0 = SD16UNI + SD16IE; // 256OSR, unipolar, interrupt enable
 SD16AE = SD16AE2; // P1.1 A1+, A1- = VSS
 SD16CCTL0 |= SD16SC; // Set bit to start conversion

 _BIS_SR(LPM0_bits + GIE);
}

#pragma vector = SD16_VECTOR
__interrupt void SD16ISR(void)
{
 if (SD16MEM0 < 0x7FFF) // SD16MEM0 > 0.3V?, clears IFG
 P1OUT &= ~0x01;
 else
 P1OUT |= 0x01;
}

Multiple Clocks

CSE 466 MSP430 Interrupts 30

No crystal on eZ430 tools
Use VLO for ACLK

(mov.w #LFXT1S_2,&BCSCTL3)

16

Processor Clock Speeds

  Often, the most important factor for reducing power
consumption is slowing the clock down
  Faster clock = Higher performance, more power
  Slower clock = Lower performance, less power

  Using assembly code:

  Using C code:

CSE 466 MSP430 Interrupts 31

; MSP430 Clock - Set DCO to 8 MHz:
 mov.b #CALBC1_8MHZ,&BCSCTL1 ; Set range
 mov.b #CALDCO_8MHZ,&DCOCTL ; Set DCO step + modulation

// MSP430 Clock - Set DCO to 8 MHz:
 BCSCTL1 = CALBC1_8MHZ; // Set range 8MHz
 DCOCTL = CALDCO_8MHZ; // Set DCO step + modulation

Processor Clock Speeds

  Another method to reduce power consumption is
to turn off some (or all) of the system clocks
  Active Mode (AM): CPU, all clocks, and enabled

modules are active (≈300 µA)
  LPM0: CPU and MCLK are disabled, SMCLK and ACLK

remain active (≈85 µA)
  LPM3: CPU, MCLK, SMCLK, and DCO are disabled;

only ACLK remains active (≈1 µA)
  LPM4: CPU and all clocks disabled, RAM is retained

(≈0.1 µA)
  A device is said to be sleeping when in low-power

mode; waking refers to returning to active mode
CSE 466 MSP430 Interrupts 32

17

MSP430 Clock Modes

CSE 466 MSP430 Interrupts 33

Only uses 1µA during low clock
Less clocks means less power!

Clocks Off Power Savings

CSE 466 MSP430 Interrupts 34

Sleep Modes No Clocks!

Only ACLK
Active

SMCLK and
ACLK Active

18

Lower Power Savings

  Finally, powering your system with lower voltages
means lower power consumption as well

CSE 466 MSP430 Interrupts 35

Principles of Low-Power Apps

  Maximize the time in LPM3 mode
  Use interrupts to wake the processor
  Switch on peripherals only when needed
  Use low-power integrated peripherals

  Timer_A and Timer_B for PWM
  Calculated branches instead of flag polling
  Fast table look-ups instead of calculations
  Avoid frequent subroutine and function calls
  Longer software routines should use single-cycle

CPU registers
CSE 466 MSP430 Interrupts 36

19

Setting Low-Power Modes

  Setting low-power mode puts the microcontroller
“to sleep” – so usually, interrupts would need to be
enabled as well.

  Enter LPM3 and enable interrupts using assembly
code:

  Enter LPM3 and enable interrupts using C code:

CSE 466 MSP430 Interrupts 37

; enable interrupts / enter low-power mode 3
 bis.b #LPM3+GIE,SR ; LPM3 w/interrupts

// enable interrupts / enter low-power mode 3
 __bis_SR_register(LPM3_bits + GIE);

Timers

  System timing is fundamental for real-time
applications

  The MSP430F2274 has 2 timers, namely
Timer_A and Timer_B

  The timers may be triggered by internal or
external clocks

  Timer_A and Timer_B also include multiple
independent capture/compare blocks that are
used for applications such as timed events and
Pulse Width Modulation (PWM)

CSE 466 MSP430 Interrupts 38

20

Timers

  The main applications of timers are to:
  generate events of fixed time-period
  allow periodic wakeup from sleep of the device
  count transitional signal edges
  replace delay loops allowing the CPU to sleep between

operations, consuming less power
  maintain synchronization clocks

CSE 466 MSP430 Interrupts 39

TxCTL Control Register

CSE 466 MSP430 Interrupts 40

Bit Description
9-8 TxSSELx Timer_x clock source: 0 0 ⇒ TxCLK

 0 1 ⇒ ACLK
 1 0 ⇒ SMCLK
 1 1 ⇒ INCLK

7-6 IDx Clock signal divider: 0 0 ⇒ / 1
 0 1 ⇒ / 2
 1 0 ⇒ / 4
 1 1 ⇒ / 8

5-4 MCx Clock timer operating mode: 0 0 ⇒ Stop mode
 0 1 ⇒ Up mode
 1 0 ⇒ Continuous mode
 1 1 ⇒ Up/down mode

2 TxCLR Timer_x clear when TxCLR = 1
1 TxIE Timer_x interrupt enable when TxIE = 1
0 TxIFG Timer_x interrupt pending when TxIFG = 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(Used by Timer_B) TxSSELx IDx MCx - TxCLR TxIE TxIFG

21

4 Modes of Operation

  Timer reset by writing a 0 to TxR
  Clock timer operating modes:

MCx Mode Description
0 0 Stop The timer is halted.
0 1 Up The timer repeatedly counts from 0x0000 to

the value in the TxCCR0 register.
1 0 Continuous The timer repeatedly counts from 0x0000 to

0xFFFF.
1 1 Up/down The timer repeatedly counts from 0x0000 to

the value in the TxCCR0 register and
back down to zero.

CSE 466 MSP430 Interrupts 41

Timer Modes

  Up Mode

  Continuous
Mode

  Up/Down
Mode

CSE 466 MSP430 Interrupts 42

22

Timer_A Example

  Use Timer A to interrupt every 1 ms

CSE 466 MSP430 Interrupts 43

SMCLK .set 1200000 ; 1200000 clocks / second
TIME_1MS .set 1000 ; 1 ms = 1/1000 s

TA_CTL .set TASSEL_2+ID_0+MC_1+TAIE ; SMCLK, /1, UP, IE
TA_FREQ .set SMCLK/TIME_1MS ; clocks / 1 ms

 clr.w &TAR ; reset timerA
 mov.w #TA_CTL,&TACTL ; set timerA control reg
 mov.w #TA_FREQ,&TACCR0 ; set interval (frequency)
 bis.w #LPM0+GIE,SR ; enter LPM0 w/interrupts
 jmp $; will never get here! (CPU is off

TA_isr: ; timer A ISR
 bic.w #TAIFG,&TACTL ; acknowledge interrupt
; <<add interrupt code here>>
 reti

 .sect ".int08" ; timer A section
 .word TA_isr ; timer A isr

Pulse Width Modulation (PWM)

  Pulse width modulation (PWM) is used to control analog
circuits with a processor's digital outputs

  PWM is a technique of digitally encoding analog signal
levels
  The duty cycle of a square wave is modulated to encode a specific

analog signal level
  The PWM signal is still digital because, at any given instant of time,

the full DC supply is either fully on or fully off

  The voltage or current source is supplied to the analog
load by means of a repeating series of on and off pulses

  Given a sufficient bandwidth, any analog value can be
encoded with PWM.

CSE 466 MSP430 Interrupts 44

23

PWM Machines

CSE 466 MSP430 Interrupts 45

PWM – Frequency/Duty Cycle

CSE 466 MSP430 Interrupts 46


Frequency

 Duty Cycle


Time

24

Watchdog Timer

  The primary function of the watchdog timer+
(WDT+) module is to perform a controlled system
restart after a software problem occurs.

  If the selected time interval expires, a system
reset is generated.

  If the watchdog function is not needed in an
application, the module can be configured as an
interval timer and can generate interrupts at
selected time intervals.

CSE 466 MSP430 Interrupts 47

Watchdog Timer

  Features of the watchdog timer+ module include:
  Four software-selectable time intervals
  Watchdog mode
  Interval mode
  Access to WDT+ control register is password protected
  Control of RST/NMI pin function
  Selectable clock source
  Can be stopped to conserve power
  Clock fail-safe feature

CSE 466 MSP430 Interrupts 48

25

Watchdog Power-up

  After a power-up cycle (PUC), the WDT+ module
is automatically configured in the watchdog mode
with an initial 32768 clock cycle reset interval
using the DCOCLK.

  The user must setup or halt the WDT+ prior to the
expiration of the initial reset interval.

CSE 466 MSP430 Interrupts 49

Switch Debounce

CSE 466 MSP430 Interrupts 50

Switch “debounded” after signal
remains low/high for specified time

26

Switch Debounce

  What to do?
  Constraints

  As little CPU overhead as possible
  Avoid sampling
  Responsiveness

  Simplest of them all: read the switch once every 500 ms
or so, and set a flag indicating the input’s state. No
reasonable switch will bounce that long. (Yuck!)

  Counting algorithms
  Reset count on every off/on position
  Switch debounced if count reaches stable number

  Latches
  Latch once
  Reset before looking for next transistion

CSE 466 MSP430 Interrupts 51

