
Branch pred. CSE 471 Autumn 02 1

Branch statistics

• Branches occur every 4-6 instructions (16-25%) in integer
programs; somewhat less frequently in scientific ones

• Unconditional branches : 20% (of branches)
• Conditional (80%)

– 66% forward (i.e., slightly over 50% of total branches). Evenly
split between Taken and Not-Taken

– 33% backward. Almost all Taken

• Probability that a branch is taken
– p = 0.2 + 0.8 (0.66 * 0.5 + 0.33) ≈ 0.7
– In addition call-return are always Taken

Branch pred. CSE 471 Autumn 02 2

Control hazards (branches)

• When do you know you have a branch?
– During ID cycle

• When do you know if the branch is Taken or Not-Taken
– During EXE cycle (e.g., for the MIPS)

• Easiest solution
– Wait till outcome of the branch is known

• Need for more sophisticated solutions because
– Modern pipelines are deep (several stages between ID and EXE)

– Several instructions issued/cycle (compounds the “number of issue
instruction slots” being lost)

Branch pred. CSE 471 Autumn 02 3

Penalty for easiest solution

• Simple single pipeline machine with 5 stages
– Stall is 2 cycles hence

– Contribution to CPI due to branches

2 x Branch freq. ≈ 2 * 0.20 = 0.4

• Modern machine with about 20 stages and 4 instructions
issued/cycle
– Stall would be, say, 12 cycles

– Loss in “instruction issue slots” = 12 * 4 = 48 … and this would
happen every 4-6 instructions!!!!!!!!

Branch pred. CSE 471 Autumn 02 4

Simple schemes to handle branches

• Techniques that could work for CPU’s with a single
pipeline with few stages:
– Comparison could be done during ID stage: cost 1 cycle only

• Need more extensive forwarding plus fast comparison

• Still might have to stall an extra cycle (like for loads)

– Branch delay slots filled by compiler
• Not practical for deep pipelines

• Predictions are required
– Static schemes (only software)

– Dynamic schemes: hardware assists

Branch pred. CSE 471 Autumn 02 5

Simple static predictive schemes

• Predict branch Not -Taken
– If prediction correct no problem
– If prediction incorrect, and this is known during EXE cycle, zero

out (flush) the pipeline registers of the already fetched instructions
following the branch (the number of fetched inst.

delay = number of stages between ID and EXE
– With this technique, contribution to CPI due to cond. branches:

0.20 * (0.7 * delay + 0.3 * 0)
(e.g., if delay =2 (10), yields 0.28 (1.40))

– The problem is that we are optimizing for the less frequent case;
but it will be the “default” for dynamic branch prediction since it is
so easy to implement.

Branch pred. CSE 471 Autumn 02 6

Static schemes (c’ed)

• Predict branch Taken
– Interesting only if target address can be computed before decision

is known

– With this technique, contribution to CPI due to cond. branches:

0.20 * (0.7 * 1 + 0.3 * delay)

(e.g., if delay =2 (10), yields 0.26 (0.74))

– The 1 is there because you need to compute the branch address

– Better than Predict Not-taken and increasingly relatively better as
delay increases

Branch pred. CSE 471 Autumn 02 7

Static schemes (c’ed)

• Prediction depends on the direction of branch
– Backward-Taken-Forward-Not-Taken (BTFNT)

• Rationale: Backward branches at end of loops: mostly taken; Forward
branches : we can assume 50-50 or maybe better 45%T and 55% NT
because branches forward for exceptions are seldom taken.

– Contribution to CPI due to cond. branches more complex
• Need to reconcile % of B vs F, and T vs NT. Assume 33% of B all T;

This leaves 66% of T with approx. 45% T and 55% NT.
But we need to now the accuracy of the prediction. When pred is

correct we pay 1 for T and 0 for NT; when incorrect we pay delay
0.20 (0.33 * 1 + 0.66 * [0.45 acc + (1-acc) * delay])(the first
term corresponds to BT and the next two to FT and FNT resp.)
(e.g., if acc = 0.8 and delay =2 (10), yields 0.18 (0.39))

Branch pred. CSE 471 Autumn 02 8

Dynamic branch prediction

• Execution of a branch requires knowledge of:
– There is a branch but one can surmise that every instruction is a

branch for the purpose of guessing whether it will be taken or not
taken (i.e., prediction can be done at IF stage)

– Whether the branch is Taken/Not-Taken (hence a branch
prediction mechanism)

– If the branch is taken what is the target address (can be computed
but can also be “precomputed”, i.e., stored in some table)

– If the branch is taken what is the instruction at the branch target
address (saves the fetch cycle for that instruction)

Branch pred. CSE 471 Autumn 02 9

Basic idea

• Use a Branch Prediction Buffer (BPB)
– Also called Branch Prediction Table (BPT), Branch History Table

(BHT)

– Records previous outcomes of the branch instruction

– How it will be indexed, updated etc. see later

• A prediction using BPB is attempted when the branch
instruction is fetched (IF stage or equivalent)

• It is acted upon during ID stage (when we know we have a
branch)

Branch pred. CSE 471 Autumn 02 10

Prediction Outcomes

• Has a prediction been made (Y/N)
– If not use default “Not Taken”

• Is it correct or incorrect

• Four cases:
– Case 1: Yes and the prediction was correct (known at EXE stage)

– Case 2: Yes and the prediction was incorrect

– Case 3: No but the default prediction (NT) was correct

– Case 4: No and the default condition (NT) was incorrect

Branch pred. CSE 471 Autumn 02 11

Penalties (Predict/Actual)

In what’s below the number of stall cycles (delay) would be 2
for a simple pipe. It would be larger for deeper pipes.

• Case 1:
– NT/NT no penalty

– T/T need to compute address:
1 bubble (but can be 0; see
later)

• Case 2
– NT/T delay

– T/NT delay

• Case 3:
– NT/NT 0 penalty

• Case 4:
– NT/T delay

Note: This assumes that the

target (or next sequential) address

is always computed and available

in case of a mispredict

Branch pred. CSE 471 Autumn 02 12

Branch Prediction Buffers

• Branch Prediction Buffer (BPB)
– How addressed (low-order bits of PC, hashing, cache-like)
– How much history in the prediction (1-bit, 2-bits, n-bits)
– Where is it stored (in a separate table, associated with the I-cache)

• Correlated branch prediction
– 2-level prediction (keeps track of other branches)

• Branch Target Buffers (BTB)
– BPB + address of target instruction (+ target instruction -- not

implemented in current micros as far as I know--)

• Hybrid predictors
– Choose dynamically the best among 2 predictors

Branch pred. CSE 471 Autumn 02 13

Variations on BPB design

PC

Table of counters (predictions)

Simple
indexing

PC

Cache-like

Tag Counters

Branch pred. CSE 471 Autumn 02 14

Simplest design

• BPB addressed by lower bits of the PC

• One bit prediction
– Prediction = direction of the last time the branch was executed

– Will mispredict at first and last iterations of a loop

• Known implementation
– Alpha 21064. The 1-bit table is associated with an I-cache line, one

bit per line (4 instructions)

Branch pred. CSE 471 Autumn 02 15

Improve prediction accuracy (2-bit saturating
counter scheme)

Property: takes two wrong predictions before it changes T to NT (and vice-versa)

predict taken predict taken

predict
not taken

predict
not taken

^

^

taken

taken

taken

not taken

not taken

not taken

not takentaken

Generally, this is
the initial state

Branch pred. CSE 471 Autumn 02 16

Two bit saturating counters

• 2 bits scheme used in:
– Alpha 21164, UltraSparc, Pentium, Power PC 604 and 620 with

variations, MIPS R10000 etc...

• PA-8000 uses a variation
– Majority of the last 3 outcomes (no need to update; just a shift

register)

• Why not 3 bit (8 states) saturating counters?
– Performance studies show it’s not that worthwhile although it is

present in the Alpha 21264

Branch pred. CSE 471 Autumn 02 17

Where to put the BPB

• Associated with I-cache lines
– 1 counter/instruction: Alpha 21164

– 2 counters/cache line (1 for every 2 instructions) : UltraSparc

– 1 counter/cache line (AMD K5)

• Separate table with cache-like tags
– direct mapped : 512 entries (MIPS R10000), 1K entries (Sparc

64), 2K + BTB (PowerPC 620)

– 4-way set-associative: 256 entries BTB (Pentium)

– 4-way set-associative: 512 entries BTB + “2-level”(Pentium Pro)

Branch pred. CSE 471 Autumn 02 18

Performance of BPB’s

• Prediction accuracy is only one of several metrics

• Others metrics:
– Need to take into account branch frequencies

– Need to take into account penalties for

• Misfetch (correct prediction but time to compute the address;
e.g. for unconditional branches or T/T if no Branch Target
Buffer (BTB); see in a few slides)

• Mispredict (incorrect branch prediction)

– These penalties might need to be multiplied by the number of
instructions that could have been issued

Branch pred. CSE 471 Autumn 02 19

Prediction accuracy

• 2-bit vs. 1-bit
– Significant gain: approx. 92% vs. 85% for f-p in Spec benchmarks,

90% vs. 80% in gcc but about 88% for both in compress

• Table size and organization
– The larger the table, the better (in general) but seems to max out at

about 1K entries

– Larger associativity also improves accuracy (in general)

