
Cache Perf. CSE 471 Autumn 02 1

Cache Performance

� CPI contributed by cache = CPIc

= miss rate * number of cycles to handle the miss
� Another important metric

Average memory access time = cache hit time * hit rate
+ Miss penalty * (1 - hit rate)

Cache Perf. CSE 471 Autumn 02 2

Improving Cache Performance

� To improve cache performance:
� Decrease miss rate without increasing time to handle the miss

(more precisely: without increasing average memory access time)
� Decrease time to handle the miss w/o increasing miss rate

� A slew of techniques: hardware and/or software
� Increase capacity, associativity etc.
� Hardware assists (victim caches, write buffers etc.)
� Tolerating memory latency: Prefetching (hardware and software),

lock-up free caches
� O.S. interaction: mapping of virtual pages to decrease cache

conflicts
� Compiler interactions: code and data placement; tiling

Cache Perf. CSE 471 Autumn 02 3

Obvious Solutions to Decrease Miss Rate

� Increase cache capacity
� Yes, but the larger the cache, the slower the access time
� Limitations for first-level (L1) on-chip caches
� Solution: Cache hierarchies (even on-chip)
� Increasing L2 capacity can be detrimental on multiprocessor

systems because of increase in coherence misses
� Increase cache associativity

� Yes, but �law of diminishing returns� (after 4-way for small
caches; not sure of the limit for large caches)

� More comparisons needed, i.e., more logic and therefore longer
time to check for hit/miss?

� Make cache look more associative than it really is (see later)

Cache Perf. CSE 471 Autumn 02 4

What about Cache Block Size?

� For a given application, cache capacity and associativity,
there is an optimal cache block size

� Long cache blocks
� Good for spatial locality (code, vectors)
� Reduce compulsory misses (implicit prefetching)
� But takes more time to bring from next level of memory hierarchy

(can be compensated by �critical word first� and subblocks)
� Increase possibility of fragmentation (only fraction of the block is

used � or reused)
� Increase possibility of false-sharing in multiprocessor systems

Cache Perf. CSE 471 Autumn 02 5

What about Cache Block Size? (c�ed)

� In general, the larger the cache, the longer the best block
size (e.g., 32 or 64 bytes for on-chip, 64, 128 or even 256
bytes for large off-chip caches)

� Longer block sizes in I-caches
� Sequentiality of code
� Matching with the IF unit

Cache Perf. CSE 471 Autumn 02 6

Example of (naïve) Analysis

� Choice between 32B (miss rate m32) and 64B block sizes
(m64)

� Time of a miss:
� send request + access time + transfer time
� send request independent of block size (e.g., 4 cycles)
� access time can be considered independent of block size (memory

interleaving) (e.g., 28 cycles)
� transfer time depends on bus width. For a bus width of say 64 bits

transfer time is twice as much for 64B (say 16 cycles) than for 32B
(8 cycles).

� In this example, 32B is better if (4+28+8)m32 < (4+28+16) m64

Cache Perf. CSE 471 Autumn 02 7

Example of (naïve) Analysis (c�ed)

� Case 1. 16 KB cache: m32 = 2.87, m64 = 2.64
� 2.87 * 40 < 2.64 * 48

� Case 2. 64KB cache: m32 = 1.35, m64 = 1.06
� 1.35 * 40 > 1.06 * 48

� 32B better for 16KB and 64B better for 64KB
� (Of course the example was designed to support the �in general the

larger the cache, the longer the best block size � statement of two
slides ago).

Cache Perf. CSE 471 Autumn 02 8

Impact of Associativity

� �Old� conventional wisdom
� Direct-mapped caches are faster; cache access is bottleneck for on-

chip L1; make L1 caches direct mapped
� For on-board (L2) caches, direct-mapped are 10% faster.

� �New� conventional wisdom
� Can make 2-way set-associative caches fast enough for L1. Allows

larger caches to be addressed only with page offset bits (see later)
� Looks like time-wise it does not make much difference for L2/L3

caches, hence provide more associativity (but if caches are
extremely large there might not be much benefit)

Cache Perf. CSE 471 Autumn 02 9

Reducing Cache Misses with more
�Associativity� -- Victim caches

� First example (in this course) of an �hardware assist�
� Victim cache: Small fully-associative buffer �behind� the

L1 cache and �before� the L2 cache
� Of course can also exist �behind� L2 and �before� main

memory
� Main goal: remove some of the conflict misses in L1

direct-mapped caches (or any cache with low associativity)

Cache Perf. CSE 471 Autumn 02 10

Index + Tag

Cache

Victim Cache1. Hit

2.Miss in L1; Hit in VC; Send
data to register and swap

3. From next level of
memory hierarchy

3�. evicted

Cache Perf. CSE 471 Autumn 02 11

Operation of a Victim Cache

� 1. Hit in L1; Nothing else needed
� 2. Miss in L1 for block at location b, hit in victim cache at

location v: swap contents of b and v (takes an extra cycle)
� 3. Miss in L1, miss in victim cache : load missing item

from next level and put in L1; put entry replaced in L1 in
victim cache; if victim cache is full, evict one of its entries.

� Victim buffer of 4 to 8 entries for a 32KB direct-mapped
cache works well.

Cache Perf. CSE 471 Autumn 02 12

Bringing more Associativity --
Column-associative Caches

� Split (conceptually) direct-mapped cache into two halves
� Probe first half according to index. On hit proceed

normally
� On miss, probe 2nd half ; If hit, send to register and swap

with entry in first half (takes an extra cycle)
� On miss (on both halves) go to next level, load in 2nd half

and swap

Cache Perf. CSE 471 Autumn 02 13

Skewed-associative Caches

� Have different mappings for the two (or more) banks of the
set-associative cache

� First mapping conventional; second one �dispersing� the
addresses (XOR a few bits)

� Hit ratio of 2-way skewed as good as 4-way conventional.

Cache Perf. CSE 471 Autumn 02 14

Reducing Conflicts --Page Coloring

� Interaction of the O.S. with the hardware
� In caches where the cache size > page size * associativity,

bits of the physical address (besides the page offset) are
needed for the index.

� On a page fault, the O.S. selects a mapping such that it
tries to minimize conflicts in the cache .

Cache Perf. CSE 471 Autumn 02 15

Options for Page Coloring

� Option 1: It assumes that the process faulting is using the
whole cache
� Attempts to map the page such that the cache will access data as if

it were by virtual addresses
� Option 2: do the same thing but hash with bits of the PID

(process identification number)
� Reduce inter-process conflicts (e.g., prevent pages corresponding

to stacks of various processes to map to the same area in the cache)
� Implemented by keeping �bins� of free pages

