Cache Performance

CPI contributed by cache = CPIC

= miss rate * number of cycles to handle the miss
Another important metric

Average memory access time = cache hit time * hit rate

+ Miss penalty * (1 - hit rate)

Cache Perf. CSE 471 Autumn 02

Improving Cache Performance

To improve cache performance:

— Decrease miss rate without increasing time to handle the miss
(more precisely: without increasing average memory access time)

— Decrease time to handle the miss w/0 increasing miss rate
A slew of techniques: hardware and/or software
— Increase capacity, associativity etc.
— Hardware assists (victim caches, write buffers etc.)
— Tolerating memory latency: Prefetching (hardware and software),
lock-up free caches

— O.S. interaction: mapping of virtual pages to decrease cache
conflicts

— Compiler interactions: code and data placement; tiling

Cache Perf. CSE 471 Autumn 02 2

Obvious Solutions to Decrease Miss Rate

Increase cache capacity
— Yes, but the larger the cache, the slower the access time
— Limitations for first-level (L1) on-chip caches
— Solution: Cache hierarchies (even on-chip)
— Increasing L2 capacity can be detrimental on multiprocessor
systems because of increase in coherence misses
Increase cache associativity

— Yes, but “law of diminishing returns” (after 4-way for small
caches; not sure of the limit for large caches)

— More comparisons needed, i.e., more logic and therefore longer
time to check for hit/miss?

— Make cache look more associative than it really is (see later)

Cache Perf. CSE 471 Autumn 02

What about Cache Block Size?

For a given application, cache capacity and associativity,
there is an optimal cache block size
Long cache blocks

— Good for spatial locality (code, vectors)

— Reduce compulsory misses (implicit prefetching)

— But takes more time to bring from next level of memory hierarchy
(can be compensated by “critical word first” and subblocks)

Increase possibility of fragmentation (only fraction of the block is
used — or reused)

Increase possibility of false-sharing in multiprocessor systems

Cache Perf. CSE 471 Autumn 02 4

What about Cache Block Size? (c’ed)

In general, the larger the cache, the longer the best block
size (e.g., 32 or 64 bytes for on-chip, 64, 128 or even 256
bytes for large off-chip caches)
Longer block sizes in I-caches

— Sequentiality of code

— Matching with the IF unit

Cache Perf. CSE 471 Autumn 02

Example of (naive) Analysis

Choice between 32B (miss rate m32) and 64B block sizes
(m64)
Time of a miss:
— send request + access time + transfer time
— send request independent of block size (e.g., 4 cycles)
— access time can be considered independent of block size (memory
interleaving) (e.g., 28 cycles)
— transfer time depends on bus width. For a bus width of say 64 bits
transfer time is twice as much for 64B (say 16 cycles) than for 32B
(8 cycles).
— In this example, 32B is better if (4+28+8)m32 < (4+28+16) m64

Cache Perf. CSE 471 Autumn 02 6




Example of (naive) Analysis (c’ed)

e Case 1. 16 KB cache: m32=2.87, m64=2.64
— 2.87*40<2.64 * 48

e (Case 2. 64KB cache: m32=1.35, m64 =1.06
— 1.35*%40>1.06 * 48

* 32B better for 16KB and 64B better for 64KB

— (Of course the example was designed to support the “in general the
larger the cache, the longer the best block size ” statement of two
slides ago).

Cache Perf. CSE 471 Autumn 02 7

Impact of Associativity

e “Old” conventional wisdom

— Direct-mapped caches are faster; cache access is bottleneck for on-
chip L1; make L1 caches direct mapped

— For on-board (L2) caches, direct-mapped are 10% faster.
+ “New” conventional wisdom
— Can make 2-way set-associative caches fast enough for L1. Allows
larger caches to be addressed only with page offset bits (see later)
— Looks like time-wise it does not make much difference for L2/L3
caches, hence provide more associativity (but if caches are
extremely large there might not be much benefit)

Cache Perf. CSE 471 Autumn 02 8

Reducing Cache Misses with more
“Associativity” -- Victim caches

+ First example (in this course) of an “hardware assist”

* Victim cache: Small fully-associative buffer “behind” the
L1 cache and “before” the L2 cache

» Of course can also exist “behind” L2 and “before” main
memory

* Main goal: remove some of the conflict misses in L1
direct-mapped caches (or any cache with low associativity)

Cache Perf. CSE 471 Autumn 02 9

2.Miss in L1; Hit in VC; Send
data to register and swap

—
3. evicted

1. Hit Victim Cache
Cache
Index + Tag
3. From next level of
memory hierarchy
Cache Perf. CSE 471 Autumn 02 10

Operation of a Victim Cache

* 1. Hitin L1; Nothing else needed

e 2. Miss in L1 for block at location b, hit in victim cache at
location v: swap contents of b and v (takes an extra cycle)

* 3. Miss in L1, miss in victim cache : load missing item
from next level and put in L1; put entry replaced in L1 in
victim cache; if victim cache is full, evict one of its entries.

* Victim buffer of 4 to 8 entries for a 32KB direct-mapped
cache works well.

Cache Perf. CSE 471 Autumn 02 11

Bringing more Associativity --
Column-associative Caches

* Split (conceptually) direct-mapped cache into two halves

+ Probe first half according to index. On hit proceed
normally

+ On miss, probe 2 half ; If hit, send to register and swap
with entry in first half (takes an extra cycle)

* On miss (on both halves) go to next level, load in 2" half
and swap

Cache Perf. CSE 471 Autumn 02 12




Skewed-associative Caches

Have different mappings for the two (or more) banks of the
set-associative cache

First mapping conventional; second one “dispersing” the
addresses (XOR a few bits)

Hit ratio of 2-way skewed as good as 4-way conventional.

Cache Perf. CSE 471 Autumn 02 13

Reducing Conflicts --Page Coloring

Interaction of the O.S. with the hardware

In caches where the cache size > page size * associativity,
bits of the physical address (besides the page offset) are
needed for the index.

On a page fault, the O.S. selects a mapping such that it
tries to minimize conflicts in the cache .

Cache Perf. CSE 471 Autumn 02 14

Options for Page Coloring

Option 1: It assumes that the process faulting is using the
whole cache

— Attempts to map the page such that the cache will access data as if
it were by virtual addresses

Option 2: do the same thing but hash with bits of the PID
(process identification number)

— Reduce inter-process conflicts (e.g., prevent pages corresponding
to stacks of various processes to map to the same area in the cache)

Implemented by keeping “bins” of free pages

Cache Perf. CSE 471 Autumn 02 15




