
Review CSE 471 1

Computer Design and Organization

• Architecture = Design + Organization + Performance

• Topics in this class:
– Central processing unit: deeply pipelined, multiple instr. per cycle, 

exploitation of instruction level parallelism (in-order and out-of-
order), support for speculation (branch prediction, spec. loads).

– Memory hierarchy: multi-level cache hierarchy, includes hardware 
and software assists for enhanced performance

– Multiprocessors: SMP’s and CMP’s –cache coherence and 
synchronization

– Multithreading: Fine, coarse and SMT

– Some “advanced” topic: current research in dept.



Review CSE 471 2

Technological improvements

• CPU :
– Annual rate of speed improvement is 35% before 1985 and 60% 

from 1985 until 2003
– Slightly faster than increase in number of transistors on-chip 

(Moore’s law)

• Memory:
– Annual rate of speed improvement (decrease in latency) is < 10%
– Density quadruples in 3 years.

• I/O :
– Access time has improved by 30% in 10 years
– Density improves by 50% every year



Review CSE 471 3

Moore’s Law



Review CSE 471 4

Evolution of Intel Microprocessor 
Speeds

0

500

1000

1500

2000

2500

3000

3500

4000

1971 1974 1979 1982 1985 1989 1993 1997 1998 1999 2000 2001 2002 2003

Year

S
p
ee

d
 (M

H
z)



Review CSE 471 5

Power Dissipation



Review CSE 471 6

Processor-Memory Performance Gap
(there is a much nicer graph in H&P 4th Ed Figure 5.2 page 289 although it assumes that the 

processor speed is still improving)

10

100

1000

1
89          91          93          95          97          99  01

• x Memory latency decrease (10x over 8 years but densities have increased 
100x over the same period)

• o x86 CPU speed (100x over 10 years)

“Memory gap”

“Memory wall”

x x

x
x x

x
o

o

o
o

o

386

Pentium

Pentium Pro
Pentium III

Pentium IV



Review CSE 471 7

Performance evaluation basics

• Performance inversely proportional to execution time

• Elapsed time includes:
user + system; I/O; memory accesses; CPU per se

• CPU execution time (for a given program): 3 factors
– Number of instructions executed

– Clock cycle time (or rate)

– CPI: number of cycles per instruction (or its inverse IPC)

CPU execution time = Instruction count * CPI * clock cycle time



Review CSE 471 8

Components of the CPI

• CPI for single instruction issue with ideal pipeline = 1

• Previous formula can be expanded to take into account 
classes of instructions 
– For example in RISC machines: branches, f.p., load-store.

– For example in CISC machines: string instructions

CPI = CPIi * fi where fi is the frequency of instructions in class i

• We’ll talk about “contributions to the CPI” from, e.g,:
– memory hierarchy

– branch (misprediction)

– hazards etc.



Review CSE 471 9

Comparing and summarizing benchmark 
performance

• For execution times, use (weighted) arithmetic mean:

Weighted Ex. Time = Weighti * Timei
• For rates, use  (weighted) harmonic mean:

Weighted Rate = 1 / (Weighti / Rate i )
• As per Jim Smith (1988 – CACM)

“Simply put, we consider one computer to be faster than another if it 
executes the same set of programs in less time”

• Common benchmark suites: SPEC for int and fp (SPEC92, 
SPEC95, SPEC2000, SPEC2006), SPECweb, SPECjava
etc., Ogden benchmark (linked lists), multimedia etc.



Review CSE 471 10

Computer design: Make the common case fast

• Amdahl’s law (speedup)
Speedup = (performance with enhancement)/(performance base case)
Or equivalently

Speedup = (exec.time base case)/(exec.time with enhancement)

• Application to parallel processing
– s fraction of program that is sequential
– Speedup S is at most 1/s
– That is if 20% of your program is sequential the maximum 

speedup with an infinite number of processors is at most  5



Review CSE 471 11

Pipelining

• One instruction/result every cycle (ideal)
– Not in practice because of hazards

• Increase throughput (wrt non-pipelined implementation)
– Throughput = number of results/second

• Speed-up (over non-pipelined implementation)
– In the ideal case, if n stages , the speed-up will be close to n. Can’t make n

too large: physical limitations and load balancing between stages & 
hazards 

• Might slightly increase the latency of individual instructions (pipeline 
overhead)



Review CSE 471 12

Basic pipeline implementation

• Five stages: IF, ID, EXE, MEM, WB

• What are the resources needed and where
– ALU’s, Registers, Multiplexers etc.

• What info. is to be passed between stages
– Requires pipeline registers between stages: IF/ID, ID/EXE, 

EXE/MEM and MEM/WB

– What is stored in these pipeline registers?

• Design of the control unit.



Review CSE 471 13

Inst.
mem.

4

PC ALU

ALU

ALU

Data
mem.

Regs.

s
e 2

zero

IF ID/RR EXE Mem WB

IF/ID ID/EX EX/MEM MEM/WB

(PC)

(Rd)

data

control

Five instructions in progress; one of each color



Review CSE 471 14

Hazards

• Structural hazards
– Resource conflict (mostly in multiple instruction issue machines; 

also for resources which are used for more than one cycle) 

• Data dependencies 
– Most common RAW but also WAR and WAW in OOO execution

• Control hazards
– Branches and other flow of control disruptions

• Consequence: stalls in the pipeline
– Equivalently: insertion of bubbles or of no-ops



Review CSE 471 15

Pipeline speed-up

1

depth pipeline 
= ealSpeedup_id

hazardsby  dcontribute CPI + 1

depth pipeline 
= hazards_Speedup



Review CSE 471 16

Example of structural hazard

• For single issue machine: common data and instruction 
memory (unified cache)
– Pipeline stall every load-store instruction (control easy to 

implement)

• Better solutions
– Separate I-cache and D-cache 

– Instruction buffers

– Both + sophisticated instruction fetch unit!

• Will see more cases in multiple issue machines



Review CSE 471 17

Data hazards

• Data dependencies between instructions that are in the pipe 
at the same time.

• For single pipeline in order issue: Read After Write hazard 
(RAW)

Add R1, R2, R3 #R1 is result register

Sub R4, R1,R2 #conflict with R1

Add R3, R5, R1 #conflict with R1

Or R6,R1,R2 #conflict with R1

Add        R5, R2, R1 #R1 OK now (5 stage pipe)



Review CSE 471 18

| |

|

|

|

|

|

|

|

|

| |

| | |

| | | |

| | | | |

Add R1, R2, R3
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

Add R5,R1,R2 | | | | | |
OK

IF            ID          EXE       MEM        WB

OK if in ID stage one can write 
in 1st part of cycle and read in 2nd part



Review CSE 471 19

Forwarding

• Result of ALU operation is known at end of EXE stage
• Forwarding between:

– EXE/MEM pipeline register to ALUinput for instructions i and i+1
– MEM/WB pipeline register to ALUinput for instructions i and i+2 

• Note that if the same register has to be forwarded, forward the last 
one to be written

– Forwarding through register file (write 1st half of cycle, read 2nd 
half of cycle)

• Need of a “forwarding box” in the Control Unit to check 
on conditions for forwarding

• Forwarding between load and store (memory copy) 



Review CSE 471 20

| |

|

|

|

|

|

|

|

|

| |

| | |

| | | |

| | | | |

Add R1, R2, R3
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

Add R5,R1,R2 | | | | | |
OK w/o forwarding

IF            ID          EXE       MEM        WB



Review CSE 471 21

Other data hazards

• Write After Write (WAW). Can happen in 
– Pipelines with more than one write stage

– More than one functional unit with different latencies (see later)

• Write After Read (WAR). Very rare
– With VAX-like autoincrement addressing modes



Review CSE 471 22

Forwarding cannot solve all conflicts

• For example, in a simple MIPS-like pipeline

Lw R1, 0(R2) #Result at end of MEM stage

Sub R4, R1,R2 #conflict with R1

Add R3, R5, R1 #OK with forwarding

Or R6,R1,R2 # OK with forwarding



Review CSE 471 23

| |

|

|

|

|

|

|

|

|

| |

| | |

| | | |

| | | | |

LW  R1, 0(R2)
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

IF            ID          EXE       MEM        WB

OK

No way!

OK



Review CSE 471 24

| | |

|

|

|

|

| |

| | | |

| | | | |

LW  R1, 0(R2)
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

IF            ID          EXE       MEM        WB

|

|

| | | | | |

Insert a bubble



Review CSE 471 25

Hazard detection unit

• If a Load (instruction i-1) is followed by instruction i that 
needs the result of the load, we need to stall the pipeline 
for one cycle , that is
– instruction i-1 should progress normally

– instruction i should not progress

– no new instruction should be fetched

• Controlled by a “hazard detection box” within the Control 
unit; it should operate during the ID stage



Review CSE 471 26

Inst.
mem.

4

PC ALU

ALU

ALU

Data
mem.

Regs.

s
e 2

zero

IF ID/RR EXE Mem WB

IF/ID ID/EX EX/MEM MEM/WB

(PC)

(Rd)

data

control

Forwarding 
unit

Control unit

Stall unit



Review CSE 471 27

Control Hazards

• Branches (conditional, unconditional, call-return)

• Interrupts: asynchronous event (e.g., I/O)
– Occurrence of an interrupt checked at every cycle

– If an interrupt has been raised, don’t fetch next instruction, flush 
the pipe, handle the interrupt 

• Exceptions (e.g., arithmetic overflow, page fault etc.)
– Program and data dependent (repeatable), hence “synchronous”



Review CSE 471 28

Exceptions

• Occur “within” an instruction, for example:
– During IF: page fault

– During ID: illegal opcode

– During EX: division by 0 

– During MEM: page fault; protection violation

• Handling exceptions
– A pipeline is restartable if the exception can be handled and the 

program restarted w/o affecting execution



Review CSE 471 29

Precise exceptions

• If exception at instruction i then 
– Instructions i-1, i-2 etc complete normally (flush the pipe)
– Instructions i+1, i+2 etc. already in the pipeline will be “no-oped”

and will be  restarted from scratch after the exception has been 
handled

• Handling precise exceptions: Basic idea
– Force a trap instruction on the next IF
– Turn off writes for all instructions i and following 
– When the target of the trap instruction receives control, it saves the 

PC of the instruction having the exception
– After the exception has been handled, an instruction “return from 

trap” will restore the PC.



Review CSE 471 30

Precise exceptions (cont’d)

• Relatively simple for integer pipeline
– All current machines have precise exceptions for integer and load-

store operations (page fault)

• More complex for f-p
– Might be more lenient in treating exceptions

– Special f-p formats for overflow and underflow etc.



Review CSE 471 31

Integer pipeline (RISC) precise exceptions

• Recall that exceptions can occur in all stages but WB

• Exceptions must be treated in instruction order
– Instruction i starts at time t

– Exception in MEM stage at time t + 3 (treat it first)

– Instruction i + 1 starts at time t +1

– Exception in IF stage at time t + 1 (occurs earlier but treat in 2nd)



Review CSE 471 32

Treating exceptions in order

• Use pipeline registers
– Status vector of possible exceptions carried on with the instruction.

– Once an exception is posted, no writing (no change of state; easy 
in integer pipeline -- just prevent store in memory)

– When an instruction leaves  MEM stage, check for exception.



This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

