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The Need for Synchronization

• Multiprogramming
– “logical” concurrency: processes appear to run concurrently 

although there is only one PC

• Multiprocessing (and multithreading)
– Concurrency can be “logical” and “physical”

• Concurrent processes must
– Protect some common data so that there are orderly updates

• Competing for access (mutual exclusion; critical sections)

– Coordinate their relative progress
• Producer-consumer relationships; barriers
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ExampleProcess P1 Process P2

A  A  +  1 A  A  +  2

ld       R1, A ld      R1,A

addi R1,R1,1 addi R1,R1, 2

st R1,A st R1,A

Original sequence (result either A+1, A+2, or A+3)

ld      R1,A ld      R1,A

addi R1,R1, 2

st R1,A

addi R1,R1,1

st R1,A

A timing sequence giving the result A+1
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Synchronization

• Locking
– Critical sections

– Mutual exclusion

– Used for exclusive access to shared resource or shared data for 
some period of time

– Efficient update of a shared (work) queue

• Barriers
– Process synchronization -- All processes must reach the barrier 

before any one can proceed (e.g., end of a parallel loop).
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Locking

• Typical use of a lock:
while (!acquire (lock))    /*spin*/

; 

/* some computation on shared data*/

release (lock)

• Acquire based on primitive: Read-Modify-Write
– Basic principle: “Atomic exchange”

– Test-and-set

– Fetch-and-add
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Test-and-set

• Lock is  stored in a memory location that contains 0 or 1

• Test-and-set (attempt to acquire) writes a 1 and returns the 
value in memory

• If the value is 0, the process gets the lock; if the value is 1 
another process has the lock.

• To release, just clear (set to 0) the memory location.
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Atomic Exchanges

• Test-and-set is one form of atomic exchange

• Atomic-swap is a generalization of Test-and-set that allows 
values besides 0 and 1

• Compare-and-swap is a further generalization: the value in 
memory is not changed unless it is equal to the test value 
supplied
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Fetch-and-T

• Generic name for fetch-and-add, fetch-and-store etc.

• Can be used as test-and-set (since atomic exchange) but 
more general. Will be used for barriers (see later)

• Introduced by the designers of the NYU Ultra where the 
interconnection network allowed combining.
– If two fetch-and-add have the same destination, they can be 

combined. However, they have to be forked on the return path
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Full/Empty Bits

• Based on producer-consumer paradigm
• Each memory location has a synchronization bit associated 

with it
– Bit = 0 indicates the value has not been produced (empty)
– Bit = 1 indicates the value has  been produced (full)

• A write stalls until the bit is empty (0). After the write the 
bit is set to full (1).

• A read stalls until the bit is full and then empty it.
• Not all load/store instructions need to test the bit. Only 

those needed for synchronization (special opcode)
• First implemented in HEP and now in Tera.



Synchron. CSE 471 9

Faking Atomicity

• Instead of atomic exchange, have an instruction pair that 
can be deduced to have operated in an atomic fashion

• Load locked (ll) + Store conditional (sc) (Alpha)
– sc detects if the value of the memory location loaded by ll has been 

modified. If so returns 0 (locking fails) otherwise 1 (locking 
succeeds)

– Similar to atomic exchange but does nor require read-modify-write

• Implementation
– Use a special register (link register)  to store the address of the 

memory location addressed by ll . On context-switch, interrupt or 
invalidation of block corresponding to that address (by another sc), 
the register is cleared. If on sc, the addresses match, the sc 
succeeds
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Example revisited (Process P1)

loop: test-and-set    R2,lock

bnz R2,loop

ld                  R1,A

addi R1,R1,A

st R1,A

st R0, lock

(a)

Fetch-and-increment A

(b)

loop: ll R1,A

addi R1,R1,1

sc       R1,A

bz R1,loop

(c )
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Spin Locks

• Repeatedly: try to acquire the lock

• Test-and-Set in a cache coherent environment 
(invalidation-based):
– Bus utilized during the whole read-modify-write cycle

– Since test-and-set writes a location in memory, need to send an 
invalidate (even if the lock is not acquired)

– In general loop to test the lock is short, so lots of bus contention

– Possibility of  “exponential back-off” (like in Ethernet protocol to 
avoid too many collisions)
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Test and Test-and-Set

• Replace “test-and-set” with “test and test-and-set”. 
– Keep the test (read) local to the cache. 

– First test in the cache (non atomic). If lock cannot be acquired, 
repeatedly test in the cache (no bus transaction)

– On lock release (write 0 in memory location) all other cached 
copies of the lock are invalidated.

– Still racing condition for acquiring a lock that has just been 
released. (O(n2)  worst case bus transactions for n contending 
processes).

• Can use ll+sc but  still racing condition when the lock is 
released
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Queuing Locks

• Basic idea: a queue of waiting processors is maintained in 
shared-memory for each lock (best for bus-based 
machines)
– Each processor performs an atomic operation to obtain a memory 

location (element of an array) on which to spin

– Upon a release, the lock can be directly handed off to the next 
waiting processor
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Software Implementation

lock struct {int Queue[P]; int Queuelast;} /*for P processors*/

/*Initially all Queue[i] are 1 except for Queue[0] = 0) */ 

Queuelast := 0;

ACQUIRE myplace := fetch-and-add (lock->Queuelast);

while (lock->Queue[myplace modP] = = 1; /* spin*/

lock->Queue[myplace modP] :=  1;

RELEASE lock->Queue[(myplace + 1) modP] :=  0;

– The Release should invalidate the cached value in the next 
processor that can then fetch the new value stored in the array.
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Queuing Locks (hardware implementation)

• Can be done several ways via directory controllers

• Associate a syncbit (aka, full/empty bit) with each block in 
memory ( a single lock will be in that block)
– Test-and-set the syncbit for acquiring the lock

– Unset to release 

– Special operation (QOLB) non-blocking operation that enqueues 
the processor for that lock if not already in the queue. Can be done 
in advance, like a prefetch operation.

• Have to be careful if process is context-switched 
(possibility of deadlocks)
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Transactions

• Critical section behaves as a transaction (in the database 
sense)
– All instructions within the transaction commits or none of them 

does

• Many possible implementations

• In “transactional memory” proposals, use of a hardware 
assisted optimistic control
– Might become important in CMPs

– Might become a basic construct of a “parallel programming 
language”
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Transaction Implementation without software 
support (overview)

• On transaction-begin start save process state
– Begin can be recognized by an atomic instruction (test-and-set etc.)
– Save registers, register maps etc.

• During transaction, buffer all state changes
– Register and memory stores
– Registers in ROB like for branch prediction
– For caches, use a status bit and keep old values in a log

• On transaction-end, check if conflicts with other running transactions
– End can be recognized by “store to lock location”
– Conflicts can be messages for invalidations (and abort of transactions that receive 

such invalidations)
– Long transactions … lots of messages

• This is the tip of the iceberg (but there are papers giving full implementations)
– For example, what to do on cache evictions etc
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Barriers

• All processes have to wait at a synchronization point
– End of parallel do loops

• Processes don’t progress until they all  reach the barrier
• Low-performance implementation: use a  counter 

initialized with the number of processes
– When a process reaches the barrier, it decrements the counter 

(atomically -- fetch-and-add (-1)) and busy waits
– When the counter is zero, all processes are allowed to progress 

(broadcast)

• Lots of possible optimizations (tree, butterfly etc. )
– Is it important? Barriers do not occur that often (Amdahl’s law….)
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Sequential Consistency – Example 1

Process P1 Process P2

write (A); while (flag != 1);    /*spin on flag*/

flag := 1;                      read (A);

• What does the programmer expect?
– Producer-consumer relationship (P1 producer; P2 consumer)

– But … what if NUMA and writing of flag is much faster than 
writing of A?
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Sequential Consistency – Example 2

Process P1                                                      Process P2

X := 0;                                                         Y:= 0;

….                                                               …..

X := 1;                                                         Y:= 1;

If (Y = 0) then Kill P2                                     If (X = 0) then Kill P1

Programmer expects P1 or P2 or both to go on

But what if loads bypass stores; or write buffers; or…
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Sequential consistency

• Seq. consistency is the behavior that programmer expects:
– Result of any execution  is the same as if the instructions of each process 

were executed in some sequential order

– Instructions of each process appear in program order in the above 
sequential order

• Equivalent to say
– Memory operations should proceed in program order

– All writes are “atomic” i.e., seen by all processors in same order

• What about all our optimizations (write buffers, load speculation etc)?
– Keep them but make everything “speculative” (e.g., on a load with a 

previous store conflict, prefetch. If  invalidated, abort before commit)

– Provide a relaxed model of memory consistency
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Relaxed Models of Memory Consistency

• Seq. consistency = total order of loads and stores

• Relaxed models
– Weak ordering

– Load and store selectively used as lock/unlock operations

– Need some “fence” operations to flush out buffers

– Reasoning needed by programmer quite subtle

• A simple relaxed model: Processor consistency
– Stores are totally ordered (so write buffers are FIFO)

– Loads can bypass stores

– Works for Example 1

– Does not work for Example 2! Programmers still need to be careful.
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