
Synchron. CSE 471 1

The Need for Synchronization

• Multiprogramming
– “logical” concurrency: processes appear to run concurrently

although there is only one PC

• Multiprocessing (and multithreading)
– Concurrency can be “logical” and “physical”

• Concurrent processes must
– Protect some common data so that there are orderly updates

• Competing for access (mutual exclusion; critical sections)

– Coordinate their relative progress
• Producer-consumer relationships; barriers

Synchron. CSE 471 2

ExampleProcess P1 Process P2

A A + 1 A A + 2

ld R1, A ld R1,A

addi R1,R1,1 addi R1,R1, 2

st R1,A st R1,A

Original sequence (result either A+1, A+2, or A+3)

ld R1,A ld R1,A

addi R1,R1, 2

st R1,A

addi R1,R1,1

st R1,A

A timing sequence giving the result A+1

Synchron. CSE 471 3

Synchronization

• Locking
– Critical sections

– Mutual exclusion

– Used for exclusive access to shared resource or shared data for
some period of time

– Efficient update of a shared (work) queue

• Barriers
– Process synchronization -- All processes must reach the barrier

before any one can proceed (e.g., end of a parallel loop).

Synchron. CSE 471 4

Locking

• Typical use of a lock:
while (!acquire (lock)) /*spin*/

;

/* some computation on shared data*/

release (lock)

• Acquire based on primitive: Read-Modify-Write
– Basic principle: “Atomic exchange”

– Test-and-set

– Fetch-and-add

Synchron. CSE 471 5

Test-and-set

• Lock is stored in a memory location that contains 0 or 1

• Test-and-set (attempt to acquire) writes a 1 and returns the
value in memory

• If the value is 0, the process gets the lock; if the value is 1
another process has the lock.

• To release, just clear (set to 0) the memory location.

Synchron. CSE 471 6

Atomic Exchanges

• Test-and-set is one form of atomic exchange

• Atomic-swap is a generalization of Test-and-set that allows
values besides 0 and 1

• Compare-and-swap is a further generalization: the value in
memory is not changed unless it is equal to the test value
supplied

Synchron. CSE 471 7

Fetch-and-T

• Generic name for fetch-and-add, fetch-and-store etc.

• Can be used as test-and-set (since atomic exchange) but
more general. Will be used for barriers (see later)

• Introduced by the designers of the NYU Ultra where the
interconnection network allowed combining.
– If two fetch-and-add have the same destination, they can be

combined. However, they have to be forked on the return path

Synchron. CSE 471 8

Full/Empty Bits

• Based on producer-consumer paradigm
• Each memory location has a synchronization bit associated

with it
– Bit = 0 indicates the value has not been produced (empty)
– Bit = 1 indicates the value has been produced (full)

• A write stalls until the bit is empty (0). After the write the
bit is set to full (1).

• A read stalls until the bit is full and then empty it.
• Not all load/store instructions need to test the bit. Only

those needed for synchronization (special opcode)
• First implemented in HEP and now in Tera.

Synchron. CSE 471 9

Faking Atomicity

• Instead of atomic exchange, have an instruction pair that
can be deduced to have operated in an atomic fashion

• Load locked (ll) + Store conditional (sc) (Alpha)
– sc detects if the value of the memory location loaded by ll has been

modified. If so returns 0 (locking fails) otherwise 1 (locking
succeeds)

– Similar to atomic exchange but does nor require read-modify-write

• Implementation
– Use a special register (link register) to store the address of the

memory location addressed by ll . On context-switch, interrupt or
invalidation of block corresponding to that address (by another sc),
the register is cleared. If on sc, the addresses match, the sc
succeeds

Synchron. CSE 471 10

Example revisited (Process P1)

loop: test-and-set R2,lock

bnz R2,loop

ld R1,A

addi R1,R1,A

st R1,A

st R0, lock

(a)

Fetch-and-increment A

(b)

loop: ll R1,A

addi R1,R1,1

sc R1,A

bz R1,loop

(c)

Synchron. CSE 471 11

Spin Locks

• Repeatedly: try to acquire the lock

• Test-and-Set in a cache coherent environment
(invalidation-based):
– Bus utilized during the whole read-modify-write cycle

– Since test-and-set writes a location in memory, need to send an
invalidate (even if the lock is not acquired)

– In general loop to test the lock is short, so lots of bus contention

– Possibility of “exponential back-off” (like in Ethernet protocol to
avoid too many collisions)

Synchron. CSE 471 12

Test and Test-and-Set

• Replace “test-and-set” with “test and test-and-set”.
– Keep the test (read) local to the cache.

– First test in the cache (non atomic). If lock cannot be acquired,
repeatedly test in the cache (no bus transaction)

– On lock release (write 0 in memory location) all other cached
copies of the lock are invalidated.

– Still racing condition for acquiring a lock that has just been
released. (O(n2) worst case bus transactions for n contending
processes).

• Can use ll+sc but still racing condition when the lock is
released

Synchron. CSE 471 13

Queuing Locks

• Basic idea: a queue of waiting processors is maintained in
shared-memory for each lock (best for bus-based
machines)
– Each processor performs an atomic operation to obtain a memory

location (element of an array) on which to spin

– Upon a release, the lock can be directly handed off to the next
waiting processor

Synchron. CSE 471 14

Software Implementation

lock struct {int Queue[P]; int Queuelast;} /*for P processors*/

/*Initially all Queue[i] are 1 except for Queue[0] = 0) */

Queuelast := 0;

ACQUIRE myplace := fetch-and-add (lock->Queuelast);

while (lock->Queue[myplace modP] = = 1; /* spin*/

lock->Queue[myplace modP] := 1;

RELEASE lock->Queue[(myplace + 1) modP] := 0;

– The Release should invalidate the cached value in the next
processor that can then fetch the new value stored in the array.

Synchron. CSE 471 15

Queuing Locks (hardware implementation)

• Can be done several ways via directory controllers

• Associate a syncbit (aka, full/empty bit) with each block in
memory (a single lock will be in that block)
– Test-and-set the syncbit for acquiring the lock

– Unset to release

– Special operation (QOLB) non-blocking operation that enqueues
the processor for that lock if not already in the queue. Can be done
in advance, like a prefetch operation.

• Have to be careful if process is context-switched
(possibility of deadlocks)

Synchron. CSE 471 16

Transactions

• Critical section behaves as a transaction (in the database
sense)
– All instructions within the transaction commits or none of them

does

• Many possible implementations

• In “transactional memory” proposals, use of a hardware
assisted optimistic control
– Might become important in CMPs

– Might become a basic construct of a “parallel programming
language”

Synchron. CSE 471 17

Transaction Implementation without software
support (overview)

• On transaction-begin start save process state
– Begin can be recognized by an atomic instruction (test-and-set etc.)
– Save registers, register maps etc.

• During transaction, buffer all state changes
– Register and memory stores
– Registers in ROB like for branch prediction
– For caches, use a status bit and keep old values in a log

• On transaction-end, check if conflicts with other running transactions
– End can be recognized by “store to lock location”
– Conflicts can be messages for invalidations (and abort of transactions that receive

such invalidations)
– Long transactions … lots of messages

• This is the tip of the iceberg (but there are papers giving full implementations)
– For example, what to do on cache evictions etc

Synchron. CSE 471 18

Barriers

• All processes have to wait at a synchronization point
– End of parallel do loops

• Processes don’t progress until they all reach the barrier
• Low-performance implementation: use a counter

initialized with the number of processes
– When a process reaches the barrier, it decrements the counter

(atomically -- fetch-and-add (-1)) and busy waits
– When the counter is zero, all processes are allowed to progress

(broadcast)

• Lots of possible optimizations (tree, butterfly etc.)
– Is it important? Barriers do not occur that often (Amdahl’s law….)

Synchron. CSE 471 19

Sequential Consistency – Example 1

Process P1 Process P2

write (A); while (flag != 1); /*spin on flag*/

flag := 1; read (A);

• What does the programmer expect?
– Producer-consumer relationship (P1 producer; P2 consumer)

– But … what if NUMA and writing of flag is much faster than
writing of A?

Synchron. CSE 471 20

Sequential Consistency – Example 2

Process P1 Process P2

X := 0; Y:= 0;

…. …..

X := 1; Y:= 1;

If (Y = 0) then Kill P2 If (X = 0) then Kill P1

Programmer expects P1 or P2 or both to go on

But what if loads bypass stores; or write buffers; or…

Synchron. CSE 471 21

Sequential consistency

• Seq. consistency is the behavior that programmer expects:
– Result of any execution is the same as if the instructions of each process

were executed in some sequential order

– Instructions of each process appear in program order in the above
sequential order

• Equivalent to say
– Memory operations should proceed in program order

– All writes are “atomic” i.e., seen by all processors in same order

• What about all our optimizations (write buffers, load speculation etc)?
– Keep them but make everything “speculative” (e.g., on a load with a

previous store conflict, prefetch. If invalidated, abort before commit)

– Provide a relaxed model of memory consistency

Synchron. CSE 471 22

Relaxed Models of Memory Consistency

• Seq. consistency = total order of loads and stores

• Relaxed models
– Weak ordering

– Load and store selectively used as lock/unlock operations

– Need some “fence” operations to flush out buffers

– Reasoning needed by programmer quite subtle

• A simple relaxed model: Processor consistency
– Stores are totally ordered (so write buffers are FIFO)

– Loads can bypass stores

– Works for Example 1

– Does not work for Example 2! Programmers still need to be careful.

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

