
Branch Prediction CSE 471 1

Branch statistics

• Branches occur every 4-7 instructions on average in integer programs,
commercial and desktop applications; somewhat less frequently in
scientific ones

• Unconditional branches : 20% (of branches)
• Conditional (80%)

– 66% forward (i.e., slightly over 50% of total branches). Most often Not
Taken

– 33% backward. Almost all Taken

• Probability that a branch is taken
– p = 0.2 + 0.8 (0.66 * 0.4 + 0.33) 0.6 (in fact simulations show a little

less than that)
– In addition call-return are always Taken

Branch Prediction CSE 471 2

Conditional Branches

• When do you know you have a branch?
– During ID cycle (Could you know before that?)

• When do you know if the branch is Taken or Not-Taken
– During EXE cycle (e.g., for the MIPS)

• Need for sophisticated solutions because
– Modern pipelines are deep (could be more than 10 stages between

ID and EXE)

– Several instructions issued/cycle (compounds the “number of issue
instruction slots” being lost)

– Several predicted branches in-flight at the same time

Branch Prediction CSE 471 3

Misprediction Penalties

Branch Prediction CSE 471 4

Inter-branch Latencies
(data from Jimenez SPEC2000 simulation of 4-issue processor)

Branch Prediction CSE 471 5

Anatomy of a Branch Predictor

Prog. Exec. Event selec. Pred. Index.

Pred. Mechan.Feedback

Recovery?

All instructions (BTB)
Branch inst. (BPB)

PC and/or global history
and/or local history

One level (BPB)
Two level (History +PHT)
Decoupled BTB + BPB

Static (ISA)
1 or 2-bit saturating counters
Markov Predictors

Branch outcome
Update pred. mechanism
Update history (updates
might be speculative)

Branch Prediction CSE 471 6

Simple schemes to handle branches

• Techniques that could work for CPU’s with a single
pipeline with few stages are not practical for deep pipelines

• Predictions are required
– Static schemes (only software): not precise enough

– Dynamic schemes: hardware assists

Branch Prediction CSE 471 7

Simple static predictive schemes

• Predict branch Not -Taken (easiest to implement; default
for dynamic branch prediction)
– If prediction correct no problem;

– If prediction incorrect, delay = number of stages between ID and
EXE

• Predict branch Taken
– Interesting only if target address can be computed early

• Prediction depends on the direction of branch
– Backward-Taken-Forward-Not-Taken (BTFNT)

• Rationale: Backward branches at end of loops: mostly taken

Branch Prediction CSE 471 8

Dynamic branch prediction

• Execution of a branch requires knowledge of:
– There is a branch but one can surmise that every instruction is a

branch for the purpose of guessing whether it will be taken or not
taken (i.e., prediction can be done at IF stage)

– Whether the branch is Taken/Not-Taken (hence a branch
prediction mechanism)

– If the branch is taken what is the target address (can be computed
but can also be “precomputed”, i.e., stored in some table)

– If the branch is taken what is the instruction at the branch target
address (saves the fetch cycle for that instruction)

Branch Prediction CSE 471 9

Basic idea

• Use a Branch Prediction Buffer (BPB)
– Also called Branch Prediction Table (BPT), Branch History Table

(BHT)

– Records previous outcomes of the branch instruction

– How it will be indexed, updated etc. see later

• A prediction using BPB is attempted when the branch
instruction is fetched (IF stage or equivalent)

• It is acted upon during ID stage (when we know we have a
branch)

Branch Prediction CSE 471 10

Prediction Outcomes

• Has a prediction been made (Y/N)
– If not use default “Not Taken”

• Is it correct or incorrect

• Two cases:
– Case 1: Yes and the prediction was correct (known at EXE stage)

or No but the default was correct: No delay

– Case 2: Yes and the prediction was incorrect or No and the default
was incorrect: Delay

Branch Prediction CSE 471 11

Simplest design

• BPB addressed by lower bits of the PC

• One bit prediction
– Prediction = direction of the last time the branch was executed

– Will mispredict at first and last iterations of a loop

• Known implementation
– Alpha 21064. The 1-bit table is associated with an I-cache line, one

bit per line (4 instructions)

Branch Prediction CSE 471 12

Improve prediction accuracy (2-bit saturating
counter scheme)

Property: takes two wrong predictions before it changes T to NT (and vice-versa)

predict taken predict taken

predict
not taken

predict
not taken

^

^

taken

taken

taken

not taken

not taken

not taken

not takentaken

Generally, this is
the initial state

Branch Prediction CSE 471 13

Two bit saturating counters

• 2 bits scheme used in:
– Alpha 21164, UltraSparc, Pentium, Power PC 604 and 620 with

variations, MIPS R10000 etc...

• PA-8000 uses a variation
– Majority of the last 3 outcomes (no state machine, just a shift

register)

• Why not 3 bit (8 states) saturating counters?
– Performance studies show it’s not that worthwhile although it is

present in the Alpha 21264

Branch Prediction CSE 471 14

Branch Prediction Buffers

• Branch Prediction Buffer (BPB)
– How addressed (low-order bits of PC, hashing, cache-like)
– How much history in the prediction (1-bit, 2-bits, n-bits)
– Where is it stored (in a separate table, associated with the I-cache)

• Correlated branch prediction
– 2-level prediction (keeps track of other branches)

• Branch Target Buffers (BTB)
– BPB + address of target instruction (+ target instruction -- not

implemented in current micros as far as I know--)

• Hybrid predictors
– Choose dynamically the best among 2 predictors

Branch Prediction CSE 471 15

Variations on BPB design

PC

Table of counters (predictions) often
called PHT (pattern history table)

Simple
indexing

(drawback
“aliasing”)

PC

Cache-like

(drawback:
expensive)

Tag Counters

Branch Prediction CSE 471 16

Where to put the BPB

• Associated with I-cache lines
– 1 counter/instruction: Alpha 21164

– 2 counters/cache line (1 for every 2 instructions) : UltraSparc

– 1 counter/cache line (AMD K5)

• Separate table with cache-like tags in general with BTB’s
(see in a few slides)
– direct mapped : 512 entries (MIPS R10000), 1K entries (Sparc

64), 2K + BTB (PowerPC 620)

– 4-way set-associative: 256 entries BTB (Pentium)

– 4-way set-associative: 512 entries BTB + “2-level”(Pentium Pro)

Branch Prediction CSE 471 17

Performance and Feedback of BPB’s

• Prediction accuracy is only one of several metrics
– Misfetch (correct prediction but time to compute the address; e.g.

for unconditional branches or T/T if no Branch Target Buffer)

– Mispredict (incorrect branch prediction)

– These penalties might need to be multiplied by the number of
instructions that could have been issued

• Need to update PHT when direction has been determined
– A potential problem: The same branch predicted several times

before reaching decision on direction (tight loops)

Branch Prediction CSE 471 18

Prediction accuracy

• 2-bit vs. 1-bit
– Significant gain: approx. 92% vs. 85% for f-p in Spec benchmarks,

90% vs. 80% in gcc but about 88% for both in compress

• Table size and organization
– The larger the table, the better (in general) but seems to max out at

about 1K entries

– Larger associativity if cache-like design improves accuracy (in
general)

Branch Prediction CSE 471 19

Correlated or 2-level branch prediction

• Outcomes of consecutive branches are not independent
• Classical example

loop
….

if (x = = 2) /* branch b1 */
x = 0;

if (y = = 2) /* branch b2 */
y = 0;

if (x != y) /* branch b3 */
do this
else do that

Branch Prediction CSE 471 20

What should a good predictor do?

• In previous example if both b1 and b2 are Taken, b3
should be Not-Taken

• A two-bit counter scheme cannot predict this behavior.

• Needs history of previous branches hence correlated
schemes for BPB’s
– Requires history of n previous branches (shift register)

– Use of this vector (maybe more than one) to index a Pattern
History Table (PHT) (maybe more than one)

Branch Prediction CSE 471 21

General idea: implementation using a global
history register and a global PHT

Global history register
last k branches (t =1, nt =0)

PHT

2 entries of
2-bit counters

k

t t tnt nt nt

Branch Prediction CSE 471 22

Gshare: a popular predictor

Global history register

PC

XOR

PHT

The Global history
register and selected
bits of the PC are
XORed to provide the
index in a single PHT

The idea is to try and
avoid aliasing, i.e.
avoid interference for
two different branches
with the same pattern

Branch Prediction CSE 471 23

Classification of 2-level (correlated) branch
predictors

• How many global registers and their length:
– GA: Global (one)
– PA: One per branch address (Local) (motivation: end of loop)
– SA: Group several branch addresses

• How many PHT’s:
– g: Global (one)
– p : One per branch address
– s: Group several branch addresses

• Previous slide was GAg (6,2)
– The “6” refers to the length of the global register
– The “2” means we are using 2-bit counters

Branch Prediction CSE 471 24

Two level Global predictors

GA

g

GA

p (or s)
one PHT per address
or set of addresses

GAg (5,2)
GAp(5,2)

PC

Branch Prediction CSE 471 25

Two level per-address predictors

g

PAg (4,2) PAp(4,2)

PC
PC

History
(shift)
registers;
one per
address

One global PHT

History
(shift)
registers;
one per
address

p (or s)
one PHT per address
or set of addresses

Branch Prediction CSE 471 26

Evaluation

• The more hardware (real estate) the better!
– GA s for a given number of “s” the larger G the better; for a given

“G” length, the larger the number of “s” the better.

– SAg with a limited number of registers performs better than gshare
at same PHT size (used in Pentium III and Pentium 4)

• Note that the result of a branch might not be known when
the GA (or PA) needs to be used again. It must be
speculatively updated (and repaired if need be)
– Why? How (hint: checkpoint history registers)?

• Ditto for PHT but less in a hurry?

Branch Prediction CSE 471 27

Branch Target Buffers

• BPB: Tag (not always) + Prediction

• BTB: Tag + prediction + next address

• Now we predict and “precompute” branch outcome and
target address during IF
– Of course more costly

– Can still be associated with cache line (UltraSparc)

– Implemented in a straightforward way in Pentium; not so
straightforward in Pentium Pro, III and 4 (see later)

– Decoupling (see later) of BPB and BTB in Power PC and PA-8000

– Entries put in BTB only on taken branches (small benefit)

Branch Prediction CSE 471 28

BTB layout

(Partial) PC Next PC (target address) Prediction

2-bit counter or
local history
register + PHTTag cache-like

Target instruction address or
I-cache line target address

During IF, check if there is a hit in the BTB. If so, the
instruction must be a branch and we can get the target address
– if predicted taken – during IF. If correct, no stall

Branch Prediction CSE 471 29

The “Misfetch” Misprediction in BTB

• Correct “Taken” prediction but incorrect target address
– Resolved after decode during target address computation

• Can happen for “return” (but see later)

• Can happen for “indirect jumps” (rare but costly)
– Might have become more frequent in object-oriented

programming such as C++, Java

Branch Prediction CSE 471 30

Decoupled BPB and BTB

• For a fixed real estate (i.e., fixed area on the chip):
– Increasing the number of entries implies less bits for history

(important if the prediction is two-level)

– Increasing the number of entries implies better accuracy of
prediction.

• Decoupled design
– Separate – and different sizes – BPB and BTB

– BPB. If it predicts taken then go to BTB (see next slide)

– Power PC 620: 2K entries BPB + 256 entries BTB

– HP PA-8000: 256*3 BPB + 32 (fully-associative) BTB

Branch Prediction CSE 471 31

Decoupled BTB

Tag Hist

Tag Next address

PC

BPB
BTB

(2) access BPB or
any 2-level
predictor

(3) if
match and
prediction
is T then
set PC to
target
address

Note: the BPB
does not
require a tag,
so could be
much larger

(1) Access BTB

Branch Prediction CSE 471 32

Return jump stack

• Indirect jumps difficult to predict except returns from
procedures (but luckily returns are about 85% of indirect
jumps)

• If returns are entered with their target address in BTB,
most of the time it will be the wrong target
– Procedures are called from many different locations

• Hence addition of a small “return stack”; 4 to 8 entries are
enough (1 in MIPS R10000, 4 in Alpha 21064, 4 in
Sparc64, 12 in Alpha 21164)
– Checked during IF, in parallel with BTB.

Branch Prediction CSE 471 33

Resume buffer

• In some “old” machines (e.g., IBM 360/91 circa 1967),
branch prediction was implemented by fetching both paths
(limited to 1 branch)

• Similar idea: “resume buffer” in MIPS R10000.
– If branch predicted taken, it takes one cycle to compute and fetch

the target

– During that cycle save the Not-Taken sequential instruction in a
buffer (4 entries of 4 instructions each).

– If mispredict, reload from the “resume buffer” thus saving one
cycle

Branch Prediction CSE 471 34

Hybrid Predictor (schematic)

PC

Global

P1c/P2c
P1 (e.g.,
local PHT)

P2(e.g.,
gshare)

Selects which
predictor to use

(e.g. tournament
predictor)

The green,
red, and
blue arrows
might
correspond
to different
indexing
functions.

Branch Prediction CSE 471 35

Tournament Predictor

Use Pred 1

Use Pred 1

Use Pred 2

Use Pred 2

0: pred is incorrect; 1 pred is correct;
a/b pred for Pred 1 / Pred 2

0/0, 1/0, 1/1

0/1 0/11/0 1/0

0/0, 0/1, 1/1

0/0,1/1 0/0,1/1

0/1

1/0

Branch Prediction CSE 471 36

Performance

• Hybrid predictor consisting of a local predictor of size s1
and a global predictor of size s2 seems to perform better
than a local or global predictor of size s s1 + s2

• Use machine learning (AI) techniques?
– Start with a “quick and dirty” predictor yielding a prediction in one

cycle

– Concurrently use a slower, more accurate predictor. If its
prediction disagrees with the fast predictor, roll back the
computation.

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

