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Branch statistics

• Branches occur every 4-7 instructions on average in integer programs, 
commercial and desktop applications; somewhat less frequently in
scientific ones

• Unconditional branches : 20% (of branches)
• Conditional (80%)

– 66% forward (i.e., slightly over 50% of total branches). Most often Not 
Taken

– 33% backward. Almost all Taken

• Probability that a branch is taken
– p = 0.2 + 0.8 (0.66 * 0.4 + 0.33) 0.6 (in fact simulations show a little 

less than that)
– In addition call-return are always Taken
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Conditional Branches

• When do you know you have a branch?
– During ID cycle (Could you know before that?)

• When do you know if the branch is Taken or Not-Taken
– During EXE cycle (e.g., for the MIPS)

• Need for sophisticated solutions because
– Modern pipelines are deep (could be more than 10 stages between 

ID and EXE)

– Several instructions issued/cycle (compounds the “number of issue
instruction slots” being lost)

– Several predicted branches in-flight at the same time
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Misprediction Penalties
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Inter-branch Latencies
(data from Jimenez SPEC2000 simulation of 4-issue processor)
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Anatomy of a Branch Predictor

Prog. Exec. Event selec. Pred. Index.

Pred. Mechan.Feedback

Recovery?

All instructions (BTB) 
Branch inst. (BPB)

PC and/or global history 
and/or local  history

One level (BPB)              
Two level (History +PHT)                          
Decoupled BTB + BPB

Static (ISA)                          
1 or 2-bit saturating counters 
Markov Predictors

Branch outcome         
Update pred. mechanism 
Update history (updates 
might be speculative)
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Simple schemes to handle branches

• Techniques that could work for CPU’s with a single 
pipeline with few stages are not practical for deep pipelines

• Predictions are required
– Static schemes (only software): not precise enough

– Dynamic schemes: hardware assists
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Simple static predictive schemes

• Predict branch Not -Taken (easiest to implement; default 
for dynamic branch prediction)
– If prediction correct no problem; 

– If prediction incorrect, delay = number of stages between ID and 
EXE

• Predict branch Taken
– Interesting only if target address can be computed early

• Prediction depends on the direction of branch
– Backward-Taken-Forward-Not-Taken (BTFNT)

• Rationale: Backward branches at end of loops: mostly taken
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Dynamic branch prediction

• Execution of a branch requires knowledge of:
– There is a branch but one can surmise that every instruction is a 

branch for the purpose of guessing  whether it will be taken or not 
taken (i.e., prediction can be done at IF stage)

– Whether the branch is Taken/Not-Taken (hence a branch 
prediction mechanism)

– If the branch is taken what is the target address (can be computed 
but can also be “precomputed”, i.e.,  stored in some table)

– If the branch is taken what is the instruction at the branch target 
address (saves the fetch cycle for that instruction)
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Basic idea

• Use a Branch Prediction Buffer (BPB) 
– Also called Branch Prediction Table (BPT), Branch History Table 

(BHT)

– Records previous outcomes of the branch instruction

– How it will be indexed, updated etc. see later

• A prediction using BPB is attempted when the branch 
instruction is fetched (IF stage or equivalent) 

• It is acted upon during ID stage (when we know we have a 
branch)
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Prediction Outcomes

• Has a prediction been made (Y/N) 
– If not use default “Not Taken”

• Is it correct or incorrect

• Two cases:
– Case 1: Yes and the prediction was correct (known at EXE stage) 

or No but the default was correct: No delay

– Case 2: Yes and the prediction was incorrect or No and the default 
was incorrect: Delay
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Simplest design

• BPB addressed by lower bits of the PC

• One bit prediction
– Prediction = direction of the last time the branch was executed

– Will mispredict at first and last iterations of a loop

• Known implementation
– Alpha 21064. The 1-bit table is associated with an I-cache line, one 

bit per line (4 instructions)
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Improve prediction accuracy (2-bit saturating 
counter scheme)

Property: takes two wrong predictions before it changes T to NT (and vice-versa)

predict taken predict taken

predict
not taken

predict
not taken

^

^

taken

taken

taken

not taken

not taken

not taken

not takentaken

Generally, this is 
the initial state
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Two bit saturating counters

• 2 bits scheme used in:
– Alpha 21164, UltraSparc, Pentium, Power PC 604 and 620 with 

variations, MIPS R10000 etc...

• PA-8000 uses a variation
– Majority of the last 3 outcomes (no state machine, just a shift 

register)

• Why not 3 bit (8 states) saturating counters?
– Performance studies show it’s not that worthwhile although it is 

present in the Alpha 21264
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Branch Prediction Buffers

• Branch Prediction Buffer (BPB)
– How addressed (low-order bits of PC, hashing, cache-like)
– How much history in the prediction (1-bit, 2-bits, n-bits)
– Where is it stored (in a separate table, associated with the I-cache)

• Correlated branch prediction
– 2-level prediction (keeps track of other branches) 

• Branch Target Buffers (BTB)
– BPB + address of target instruction (+ target instruction -- not 

implemented in current micros as far as I know--)

• Hybrid predictors
– Choose dynamically the best among 2 predictors
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Variations on BPB design

PC

Table of counters (predictions) often 
called PHT (pattern history table)

Simple 
indexing

(drawback 
“aliasing”)

PC

Cache-like

(drawback: 
expensive)

Tag          Counters
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Where to put the BPB

• Associated with I-cache lines
– 1 counter/instruction: Alpha 21164

– 2 counters/cache line (1 for every 2 instructions) : UltraSparc

– 1 counter/cache line (AMD K5)

• Separate table with cache-like tags in general with BTB’s
(see in a few slides)
– direct mapped :  512  entries (MIPS R10000), 1K entries (Sparc

64), 2K  + BTB (PowerPC 620) 

– 4-way set-associative: 256 entries  BTB (Pentium)

– 4-way set-associative: 512 entries  BTB + “2-level”(Pentium Pro) 
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Performance  and Feedback of BPB’s

• Prediction accuracy is only one of several metrics
– Misfetch (correct prediction but time to compute the address; e.g. 

for unconditional branches or T/T if no Branch Target Buffer) 

– Mispredict (incorrect branch prediction)

– These penalties might need to be multiplied by the number of 
instructions that could have been issued

• Need to update PHT when direction has been determined
– A potential problem: The same branch predicted several times 

before reaching decision on direction (tight loops)



Branch Prediction CSE 471 18

Prediction accuracy

• 2-bit vs. 1-bit
– Significant gain: approx. 92% vs. 85% for f-p in Spec benchmarks,  

90% vs. 80% in gcc but about 88% for both in compress

• Table size and organization
– The larger the table, the better (in general) but seems to max out at 

about 1K entries

– Larger associativity if cache-like design improves accuracy (in 
general)
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Correlated or 2-level branch prediction

• Outcomes of consecutive branches are not independent
• Classical example

loop
….

if ( x = = 2) /* branch b1 */
x = 0;

if ( y = = 2) /* branch b2 */
y = 0;

if ( x != y) /* branch b3 */
do this
else do that
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What should a good predictor do?

• In previous example if both b1 and b2 are Taken, b3 
should be Not-Taken

• A two-bit counter scheme cannot predict this behavior.

• Needs history of previous branches hence correlated 
schemes for BPB’s
– Requires history of  n previous branches (shift register)

– Use of this vector (maybe more than one) to index a Pattern 
History Table (PHT) (maybe more than one)
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General idea: implementation using a global 
history register and a global PHT

Global history register
last k branches (t =1, nt =0)

PHT

2  entries of
2-bit counters

k

t t tnt nt nt
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Gshare: a popular predictor

Global history register

PC

XOR

PHT

The Global history 
register and selected 
bits of the PC are 
XORed to provide the 
index in a single PHT

The idea is to try and 
avoid aliasing, i.e. 
avoid  interference for 
two different branches 
with the same pattern
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Classification of 2-level (correlated) branch 
predictors

• How many global registers and their length:
– GA: Global (one)
– PA: One per branch address (Local) (motivation: end of loop)
– SA: Group several branch addresses

• How many PHT’s:
– g: Global (one)
– p : One per branch address
– s: Group several branch addresses

• Previous slide was GAg (6,2)
– The “6” refers to the length of the global register
– The “2” means we are using 2-bit counters
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Two level Global predictors

GA

g

GA

p (or s)
one PHT per address
or set of addresses

GAg (5,2)
GAp(5,2)

PC
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Two level per-address predictors

g

PAg (4,2) PAp(4,2)

PC
PC

History 
(shift) 
registers; 
one per 
address

One global PHT

History 
(shift) 
registers; 
one per 
address

p (or s)
one PHT per address
or set of addresses
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Evaluation

• The more hardware (real estate) the better!
– GA s  for a given number of “s” the larger G the better; for a given 

“G” length, the larger the number of “s” the better.

– SAg with a limited number of registers performs better than gshare
at same PHT size (used in Pentium III and Pentium 4)

• Note that the result of a branch might not be known when 
the GA (or PA) needs to be used again. It must be 
speculatively updated (and repaired if need be)
– Why? How (hint: checkpoint history registers)?

• Ditto for PHT but less in a hurry?
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Branch Target Buffers

• BPB: Tag (not always) + Prediction

• BTB: Tag + prediction + next address

• Now we predict and “precompute” branch outcome and 
target address during IF
– Of course more costly

– Can still be associated with cache line (UltraSparc)

– Implemented in a straightforward way in Pentium; not so 
straightforward in Pentium Pro, III and 4 (see later)

– Decoupling (see later) of BPB and BTB in Power PC and PA-8000

– Entries put in BTB only on taken branches (small benefit)
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BTB layout

(Partial) PC          Next PC (target address)     Prediction

2-bit counter or 
local history 
register + PHTTag cache-like

Target instruction address or   
I-cache line target address

During IF, check if there is a hit in the BTB. If so, the 
instruction must be a branch and we can get the target address 
– if predicted taken – during IF. If correct, no stall
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The “Misfetch” Misprediction in BTB

• Correct “Taken” prediction but incorrect target address
– Resolved after decode during target address computation

• Can happen for “return” (but see later)

• Can happen for “indirect jumps” (rare but costly)
– Might have become more frequent in object-oriented 

programming such as  C++, Java
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Decoupled BPB and BTB

• For a fixed real estate (i.e., fixed area on the chip):
– Increasing the number of entries implies less bits for history 

(important if the prediction is two-level)

– Increasing the number of entries implies better accuracy of 
prediction.

• Decoupled design
– Separate – and different sizes – BPB and BTB

– BPB. If it predicts taken then go to BTB (see next slide)

– Power PC 620: 2K entries  BPB + 256 entries BTB 

– HP PA-8000:  256*3 BPB + 32 (fully-associative) BTB
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Decoupled BTB

Tag                  Hist

Tag              Next address

PC

BPB
BTB

(2) access BPB or 
any 2-level 
predictor

(3) if 
match and 
prediction 
is T then 
set PC to 
target 
address

Note: the BPB 
does not 
require a tag, 
so could be 
much larger

(1) Access BTB
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Return jump stack

• Indirect jumps difficult to predict except returns from 
procedures (but luckily returns are about 85% of indirect 
jumps)

• If returns are entered with their target address in BTB, 
most of the time it will be the wrong target 
– Procedures are called from many different locations

• Hence addition of a small “return stack”; 4 to 8 entries are 
enough (1 in MIPS R10000, 4 in Alpha 21064,  4 in 
Sparc64, 12 in Alpha 21164)
– Checked  during IF, in parallel with BTB.
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Resume buffer

• In some “old” machines (e.g., IBM 360/91 circa 1967), 
branch prediction was implemented by fetching both paths 
(limited to 1 branch)

• Similar idea: “resume buffer” in MIPS R10000.
– If branch predicted taken, it takes one cycle to compute and fetch 

the target

– During that cycle save the Not-Taken sequential instruction in a 
buffer (4 entries of  4 instructions each).

– If mispredict, reload from the “resume buffer” thus saving one 
cycle
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Hybrid Predictor (schematic)

PC

Global

P1c/P2c
P1 (e.g., 
local PHT)

P2(e.g.,
gshare)

Selects which 
predictor to use 

(e.g. tournament 
predictor)

The green, 
red, and 
blue arrows 
might 
correspond 
to different 
indexing 
functions.
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Tournament Predictor

Use Pred 1

Use Pred 1

Use Pred 2

Use Pred 2

0: pred is incorrect; 1 pred is correct; 
a/b pred for Pred 1 / Pred 2

0/0, 1/0, 1/1

0/1 0/11/0 1/0

0/0, 0/1, 1/1

0/0,1/1 0/0,1/1

0/1

1/0
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Performance

• Hybrid predictor consisting of a local predictor of size s1 
and a global predictor of size s2 seems to perform better 
than a local or global predictor of size  s s1 + s2

• Use machine learning (AI) techniques?
– Start with a “quick and dirty” predictor yielding a prediction in one 

cycle

– Concurrently use a slower, more accurate predictor. If its 
prediction disagrees with the fast predictor, roll back the 
computation.
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