The EPIC-VLIW Approach

o Explicitly Parallel Instruction Computing (EPIC) isa
“philosophy”

 Very Long Instruction Word (VLIW) isan implementation
of EPIC

» Concept derives from horizontal microprogramming,
namely:
— A sequence of steps (microoperation) that interprets the | SA
— If only one microop per cycle: vertical microprogramming

— If (at the extreme all) several units (say, incr PC, add, f-p, register
fileread, register file write etc...) can be activated in the same
cycle: horizontal microprogramming

VLIW CSE 471

The EPIC “philosophy”

Compiler generates packets, or bundles, of instructions that
can execute together

— Instructions executed in order (static scheduling) and assumed to
have afixed latency

Architecture should provide features that assists the
compiler in exploiting ILP

— Branch prediction, load speculation (see later), and associated
recoveries

Difficulties occur with unpredictable latencies :

— Branch prediction — Use of predication in addition to static and
dynamic branch prediction

— Pointer-based computations —Use cache hints, speculative loads

VLIW CSE 471

Why EPIC?

« Dynamically scheduled processors have (lower CPI) better
performance than statically scheduled ones. So why EPIC?

o Statically scheduled hardware is ssimpler
— Examples?

« Static scheduling can look at the whole program rather
than arelatively small instruction window. More
possibilities of optimization

— R1 < R2+R3 latency 1

— R3 €< R4* R5 latency m; could start m-2 cycles before the
addition

VLIW CSE 471

Other Static Scheduling Techniques

Eliminate branches via predication (next slides)
Loop unrolling
Software pipelining (see in afew dlides)
Use of global scheduling
— Trace scheduling technique: focus on the critical path

Software prefetching
— We'll talk about prefetching at length later

VLIW CSE 471

Predication Basic |dea

Associate a Boolean condition (predicate) with the issue,
execution, or commit of an instruction

— The stage in which to test the predicate is an implementation
choice

If the predicate istrue, the result of the instruction is kept
If the predicate is false, the instruction is nullified

Distinction between

— Partial predication: only afew opcodes can be predicated
— Full predication: every instruction is predicated

VLIW CSE 471

Predication Benefits

Allows compiler to overlap the execution of independent
control constructs w/o code explosion

Allows compiler to reduce frequency of branch
Instructions and, consequently, of branch mispredictions

Reduces the number of branches to be tested in agiven
cycle

Reduces the number of multiple execution paths and
associated hardware costs (copies of register maps etc.)

Allows code movement in superblocks

VLIW CSE 471

Predication Costs

Increased fetch utilization
Increased register consumption

If predication istested at commit time, increased
functional-unit utilization

With code movement, increased complexity of exception
handling

— For example, insert extra instructions for exception checking

If every instruction is predicated, larger instruction
— Impacts |-cache

VLIW CSE 471

Flavors of Predication Implementation

 Hasitsrootsin vector machineslike CRAY -1

— Creation of vector masks to control vector operations on an
element per element basis

o Often (partial) predication limited to conditional moves as,
e.g., inthe Alpha, MIPS 10000, IBM Power PC, SPARC
and Intel P6 microarchitecture

« Full predication: Every instruction predicated as in Intel
Itanium (IA-64 |SA)

VLIW CSE 471

Partial Predication: Conditional Moves

CMOV R1, R2, R3
— MoveR2toR1iIf R3x0

Main compiler use: If (cond) S1 (with result in Rres)
— (1) Compute result of S1in Rsl;

— (2) Compute condition in Rcond,;

— (3) CMOQV Rres, Rsl, Rcond

No need (in this example) for branch prediction

Very useful if condition can be computed ahead or, e.g., In
parallel with result.

But: Increases register pressure (Rcond is general register)

VLIW CSE 471

Other Forms of Partial Predication

« Select dedt, srcl, src2,cond
— Correspondsto C-like--- dest = ((cond) ? srcl : src2)
— Note the destination register is always assigned a value
— Usein the Multiflow (first commercial VLIW machine)
o Nullify

— Any register-register instruction can nullify the next instruction,
thus making it conditional

VLIW CSE 471

10

Full Predication

» Define predicates with instructions of the form:

Pred_<cmp> Poutl . , POUt2 e , SICL, sC2 (P,)) where

— Poutl and Pout2 are assigned values according to the comparison
between srcl and src2 and the cmp “opcode”

— The predicate types are most often U (unconditional) and Uits
complement, and OR and OR

— The predicate define instruction can itself be predicated with the
vaueof P, ,

» There are definiterulesfor that, e.g., if Pin =0, U and U aresetto 0

independently of the result of the comparison and the OR predicates
are not modified.

VLIW CSE 471

11

then, r

|f-conversion

_‘el
@%

join

The if condition will set
pltoU

The then will be executed
predicated on pl(U)

The else will be executed
predicated on p1(U)
The“join” will in generd
be predicated on some
form of OR predicate

VLIW CSE 471

12

|A-64 : Explicitly Parallel Architecture

128 bits (bundle)

Instruction 2 Instruction 1 Instruction 0 Template
41 bits 41 bits 41 bits 5 bits
pd P 4
Memory (M) Memory (M) Integer (I) (MMI)

| A-64 template specifies

— Thetype of operation for each instruction, e.g.

e MK, MMI, MII, MLI, MIB, MMF, MFB, MMB, MBB, BBB
— Intra-bundle relationship, e.g.

e« M/MlorMIl/I (/isa“stop” meaning no parallelism)

— Inter-bundle relationship

Most common combinations covered by templates

— Headroom for additional templates
Simplifies hardware reguirements
Scales compatibly to future generations

VLIW CSE 471

M=Memory

I=Integer

B=Branch

F=Floating-point

L=Long Immediate

13

DE-Khyis
Lz

cacha

|[tanium Overview

L1 instruction cache
and TLE
I fetch/prafeich enging
Eranch
pradiction Decouping 14-32
Gurer E bundles decode
and
) ; canin
[Efls]le] [mp=ffrfle] [FIF]
T Yy [BB |
Reglster stack enginaremapping | I
g Branch and 128 Inbeger 125 Nioating-poin
o predicale registers reglsbers
E' 1 1 [L]
i]] L
=
2 || eranen nteger iz
n Lnits T L1
unks data ALAT —
E cacne F';;ff'
I Lmiiis
B
o
(=]
&
- SID
Fivlas
| I

Bus coniroiler

VLIW CSE 471

4-Mbyts
L3

cache

|A-64’s Large Register File

I e Floating-Point Branch Predicate
nteger Registers Registers Registers Registers
63 0 81 0 63 0 :
_ bit O
0 0.0 T
P = ;
— | -
| | .
NaT []32 static [] 32 static 16 Static | |
l96 Stacked, Rotating |:| 96 Rotating 48 Rotating |:|
VLIW CSE 471

15

[tanium Implementation

Can execute 2 bundles (6 instructions) per cycle

10 stage pipeline

4 integer units (2 of them can handle load-store), 2 f-p
units and 3 branch units

|ssue in order, execute in order but can complete out of
order. Uses a (restricted) register scoreboard technigue to
resolve dependencies.

VLIW CSE 471

16

[tanium Implementation

e Predication reduces number of branches and number of
mispredicts,

* Nonetheless: sophisticated branch predictor
— Two level branch predictor of the SAsvariety

— Some provision for multiway branches
» Several basic blocks can terminate in the same bundle

— 4 registers for highly predictable target addresses (end of |oops)
hence no bubble on taken branch

— Return address stack
— Hints from the compiler
— Possibility of prefetching instructions from L2 to instruction buffer

VLIW CSE 471 17

[tanium Implementation

 Thereare “instruction queues’ between the fetch unit and
the execution units. Therefore branch bubbles can often be
absorbed because of long latencies (and stalls) in the
execute stages

« Some form of scoreboarding is used for detecting
dependencies

VLIW CSE 471 18

Traditional Register Models

Traditional Register Models Traditional Register Stacks

Procedure Register Memory Procedures Register

ﬂ

» Procedure A calls procedure B
* Procedures must share spacein
register

» Performance penalty dueto
register save/ restore

| think that the “traditional register stack” model

they refer to isthe “register windows’ model used o
in Sparc * Eliminate the need for save/ restore by
Sp reserving fixed blocks in register
However, fixed blocks waste resources

VLIW CSE 471 19

|A-64 Register Stack
Traditional Register Stacks |A-64 Register Stack

Procedures Register Procedures Register

Eliminate the need for save/ restore by reserving fixed |A-64 abletoreserve variable
blocksin register block sizes
However, fixed blocks waste resources * No wasted resources

VLIW CSE 471

20

Software pipelining

* Reorganize loops with loop-carried dependences by

“symbolically” unrolling them

— New code : statements of distinct iterations of original code
— Takean “horizontal” dlice of several (dependent) iterations

|—| Original code
Load X]i] dependence
Use x[] -<-’ N
store (i .
‘ \ HE
|| -

]

Iter. |

Ilter. 1+ 1

\}E?(N i(3&':2471

New code

I Store x[i]
B s i

Load x[i-2]

21

Software Pipelining via Rotating Registers

Sequential Loop Execution Software Pipelining Loop Execution

- [
1 1

» Traditional architectures need complex software loop unrolling for pipelining
— Results in code expansion --> Increases cache misses --> Reduces performance
* |A-64 utilizesrotating registers (rO ->r1, r1 -> r2 etc in successive iterations) to
achieve software pipelining
— Avoids code expansion --> Reduces cache misses --> Higher performance
VLIW CSE 471 2o

Time

|A-64 Floating-Point Architecture

(82 bit floating point numbers)

o 128 registers

— Allows parallel execution of multiple floating-point operations
o Simultaneous Multiply - Accumulate (FMAC)

— 3-input, 1-output operation:a* b+c->d

— Shorter latency than independent multiply and add

— Greater internal precision and single rounding error

VLIW CSE 471 23

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

