
Trace cache and Back-end Oper. CSE 471 1

Instruction Fetch Unit Using I-cache

I-cache I-TLB

Decoder

Branch

Pred

Register renaming

Execution units

Trace cache and Back-end Oper. CSE 471 2

Instruction Fetch Unit Using Trace Cache

Trace Cache Icache I-TLB

Branch

Predictor

Trace

Predictor

Decoder

Register renaming

Execution units

Fill

Unit

Trace cache and Back-end Oper. CSE 471 3

Two Traces can have the same tag

• Assume traces <= 16 instructions

• Traces B1B2B4 and B1B3B4 have same tag (address L1)

• Differentiated by trace predictor or something else (e.g.,#of branches
taken)

B1: 6 instructions

B2: 5 instructions
B3: 4 instructions

B4: 5 instructions

L1:

then else

Trace cache and Back-end Oper. CSE 471 4

Back-end Operations (OOO)

• Instruction scheduling
– Detecting a ready instruction: wake-up
– Maybe more than m ready instructions in an m-way superscalar:

need to select

• An often “important“ instruction” is load
– Load dependencies are bottlenecks
– Load latencies are variable
– Does a given load conflict with previous store? Load speculation

• Other optimizations
– Value prediction??? Critical instructions??? Clustering of

functional units???

Trace cache and Back-end Oper. CSE 471 5

Reservation Stations and Functional Units

2 1 3(7)20In-order queueUltra SparcIII

2 2 235 (20,15)hybrid (1 for int /mem 1 for fp)Alpha 21264

2 1 248 (16,16,16)hybrid (1 for int, 1 for mem, 1 for
fp)

MIPS 10000

3 3 360distributed AMD Opteron

3 3 372centralizedAMD K6

5(5) 2 2(6)126 (72,54)hybrid (1 for mem.op,
1 for rest)

Intel Pentium 4

3(3) 2 4(4)20centralizedIntel P6 (Pentium III)

4(2) 2 231distributedIBM Power 4

4(1) 1 115distributedIBM Power PC 620

Functional units
Int l/s fp

Number of
res. stations

RS typeProcessor

Trace cache and Back-end Oper. CSE 471 6

Wake-up

• If f functional units, then up to f results per cycle

• Hence f comparators per operand in reservation station

• If w reservation stations then need of 2fw comparators
– From previous slide over a 1000 comparators!

• Can be reduced by
– Res. Stations distributed by function

– There might not be f broadcast buses

Trace cache and Back-end Oper. CSE 471 7

Select

• Hardwired priority
– Enforced by a hardware encoder: woken-up instruction sends a

request for issue to encoder

– In general “oldest woken-up instruction” first

• Examples of difficulty:
– Result register name of an instruction must be broadcast one cycle

before the result is computed so that a dependent instruction can be
woken-up in time to get the forwarded result

– In case of a cache access, this is speculative so need to be able to
recover, i.e., not execute a selected instruction at a given time but
let it remain in the instruction window

Trace cache and Back-end Oper. CSE 471 8

Load Speculation

• Load = Address computation + Get memory contents

• Two flavors of speculation
– Address speculation: Used for prefetching (see cache techniques

later on)

– Memory dependence prediction: dependence between loads and
previous stores. The so-called memory disambiguation in Intel
Core architecture, for example

Trace cache and Back-end Oper. CSE 471 9

Store Buffer

• Once the address to where to store has been generated, the
store will be put in a store buffer if either
– The result of the store depends on an uncompleted instruction
– The result of the store is known but the store instruction is not

committed

• An entry in the store buffer consists of:
– A bit to indicate that the entry is free (state AV)
– The store has been woken-up, the store address has been computed

but the result is not there (state AD)
– Address and result are there but the store has not been committed

(state RE)
– The store instruction has been committed (state CO)

Trace cache and Back-end Oper. CSE 471 10

Load/Store Unit

AGU

Load/store reservation stations
or instruction window

Store
buffer

Status Address Data

Store unit

Data Cache

Address Data

Load buffer

Load Unit

Trace cache and Back-end Oper. CSE 471 11

Load Issue

• Simple scheme: Load and store issue (to AGU) in program
order
– Simplest: Load can issue only if store buffer empty

– Simpler: load bypassing – load issue if no address conflict with
addresses in store buffer

• Requires to check if preceding store instruction has entered the address in the
store buffer

• If there is a match in state AD or RE the load is aborted (contents discarded)

– Next: load forwarding
• Take advantage of states RE and CO and forward result to result register of

load.

Trace cache and Back-end Oper. CSE 471 12

More load speculation

• Stores issue in program order but a load can issue before
some store (i.e., load/store res. station is not a queue)

• Pessimistic approach (previous slide) + check that there is
no store left “unissued” in reservation station before the
load
– Used in Pentium

• Optimistic approach: always issue loads
– Need of a load buffer so we can recover

• Dependence prediction
– Like optimistic but use of a predictor of memory dependencies and

hence fewer recoveries

Trace cache and Back-end Oper. CSE 471 13

Example

Prior to this instruction all stores have been committed

i1: st R1, memadd1

………………….

i2: st R2, memadd2

………………………..

i3: ld R3, memadd3

………………….

i4: ld R4, memadd4

True mem.dep.

Ready to
issue

Trace cache and Back-end Oper. CSE 471 14

Example (c’ed)

• Pessimistic:
– no load can issue until i2 has computed its address and put it in store

buffer
– Then i4 can issue
– i3 will have to wait till i2 has computed result and can forward (state RE)

• Optimistic
– i3 and i4 issue and are put in load buffer.
– When i1 computes its address, nothing happens in the load buffer
– When i2 reaches state RE (or AD depending on implementation), i3 and i4

are removed from the load buffer and will have to reissue (i4 because it
might depend on i3, again depending on implementation)

• Dependence prediction
– If dependence between i2 and i3 is predicted, i3 cannot issue but i4 can (if

not dependent on i3)

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

