
Caches CSE 471
1

Principle of Locality: Memory Hierarchies

• Text and data are not accessed randomly
• Temporal locality

– Recently accessed items will be accessed in the near future (e.g.,
code in loops, top of stack)

• Spatial locality
– Items at addresses close to the addresses of recently accessed items

will be accessed in the near future (sequential code, elements of
arrays)

• Leads to memory hierarchy at two main interface levels:
– Processor - Main memory -> Introduction of caches
– Main memory - Secondary memory -> Virtual memory (paging

systems)

Caches CSE 471
2

Processor - Main Memory Hierarchy

• Registers: Those visible to ISA + those renamed by
hardware

• (Hierarchy of) Caches: plus their enhancements
– Write buffers, victim caches etc…

• TLB’s and their management

• Virtual memory system (O.S. level) and hardware assists
(page tables)

• Inclusion of information (or space to gather information)
level per level
– Almost always true

Caches CSE 471
3

Questions that Arise at Each Level

• What is the unit of information transferred from level to
level ?
– Word (byte, double word) to/from a register

– Block (line) to/from cache

– Page table entry + misc. bits to/from TLB

– Page to/from disk

• When is the unit of information transferred from one level
to a lower level in the hierarchy?
– Generally, on demand (cache miss, page fault)

– Sometimes earlier (prefetching)

Caches CSE 471
4

Questions that Arise at Each Level (c’ed)

• Where in the hierarchy is that unit of information placed?
– For registers, directed by ISA and/or register renaming method

– For caches, in general in L1
• Possibility of hinting to another level (Itanium) or of bypassing the

cache entirely, or to put in special buffers

• How do we find if a unit of info is in a given level of the
hierarchy?
– Depends on mapping;

– Use of hardware (for caches/TLB) and software structures (page
tables)

Caches CSE 471
5

Questions that Arise at Each Level (c’ed)

• What happens if there is no room for the item we bring in?
– Replacement algorithm; depends on organization

• What happens when we change the contents of the info?
– i.e., what happens on a write?

Caches CSE 471
6

Caches (on-chip, off-chip)

• Caches consist of a set of entries where each entry has:
– line (or block) of data: information contents

– tag: allows to recognize if the block is there

– status bits: valid, dirty, state for multiprocessors etc.

• Cache Geometries
– Capacity (or size) of a cache: number of lines * line size, i.e., the

cache metadata (tag + status bits) is not counted

– Associativity

– Line size

Caches CSE 471
7

Cache Organizations

• Direct-mapped

• Set-associative

• Fully-associative

Caches CSE 471
8

Cache Hit or Cache Miss?

• How to detect if a memory address (a byte address) has a
valid image in the cache:

• Address is decomposed in 3 fields:
– line offset or displacement (depends on line size)

– index (depends on number of sets and set-associativity)

– tag (the remainder of the address)

• The tag array has a width equal to tag

Caches CSE 471
9

Hit Detection

tag index displ.

Example: cache capacity C, line size b

Direct mapped: displ = log2 b; index = log2(C/ b); tag = 32 -index - displ

N -way S.A: displ = log2 b; index = log2(C/ bN); tag = 32 -index - displ

So what does it mean to have 3-way (N=3) set-associativity?

Caches CSE 471
10

Replacement Algorithm

• None for direct-mapped

• Random or LRU or pseudo-LRU for set-associative caches
– Not an important factor for performance for low associativity. Can

become important for large associativity and large caches

Caches CSE 471
11

Writing in a Cache

• On a write hit, should we write:
– In the cache only (write-back) policy

– In the cache and main memory (or higher level cache) (write-
through) policy

• On a write miss, should we
– Allocate a block as in a read (write-allocate)

– Write only in memory (write-around)

Caches CSE 471
12

The Main Write Options

• Write-through (aka store-through)
– On a write hit, write both in cache and in memory

– On a write miss, the most frequent option is write-around

– Pro: consistent view of memory (better for I/O); no ECC required
for cache

– Con: more memory traffic (can be alleviated with write buffers)

• Write-back (aka copy-back)
– On a write hit, write only in cache (requires dirty bit)

– On a write miss, most often write-allocate (fetch on miss) but
variations are possible

– Pro-con reverse of write through

Caches CSE 471
13

Classifying the Cache Misses: The 3 C’s

• Compulsory misses (cold start)
– The first time you touch a line. Reduced (for a given cache

capacity and associativity) by having large lines

• Capacity misses
– The working set is too big for the ideal cache of same capacity and

line size (i.e., fully associative with optimal replacement
algorithm). Only remedy: bigger cache!

• Conflict misses (interference)
– Mapping of two lines to the same location. Increasing associativity

decreases this type of misses.

• There is a fourth C: coherence misses (cf. multiprocessors)

Caches CSE 471
14

Example of Cache Hierarchies

(1MB, 8,128) WB(16KB,4,64) WTTrace cache 96KBPentium 4

(512KB,8,32) WB(16KB,4,32) WB(16KB,2,32)Pentium III

“glued”(512KB,8,32) WB(16KB,2,32) WB(16KB,2,32)Pentium II

Off-chip up to 8MB(8KB,2,32) WT/WB(8KB,2,32)Pentium

0ff-chip(16MB,1,64)(64KB,2,64)(64KB,2,64)Alpha 21264

(96KB,3,64) WB(8KB, 1, 32) WT(8KB, 1, 32) Alpha 21164

Off-chip (2MB,1,64)(8KB, 1, 32) WT(8KB, 1, 32) Alpha 21064

L2D-CacheI-CacheProcessor

Caches CSE 471
15

Cache Performance

• CPI contributed by cache = CPIc

= miss rate * number of cycles to handle the miss

• Another important metric

Average memory access time = cache hit time * hit rate

+ Miss penalty * (1 - hit rate)

Caches CSE 471
16

Improving Cache Performance

• To improve cache performance:
– Decrease miss rate without increasing time to handle the miss

(more precisely: without increasing average memory access time)
– Decrease time to handle the miss w/o increasing miss rate

• A slew of techniques: hardware and/or software
– Increase capacity, associativity etc.
– Hardware assists (victim caches, write buffers etc.)
– Tolerating memory latency: Prefetching (hardware and software),

lock-up free caches
– O.S. interaction: mapping of virtual pages to decrease cache

conflicts
– Compiler interactions: code and data placement; tiling

Caches CSE 471
17

Improving L1 Cache Access Time

• Processor generates virtual addresses

• Can cache have virtual address tags?
– What happens on a context switch?

• Can cache and TLB be accessed in parallel?
– Need correspondence between page size and cache size +

associativity

• What about virtually addressed physically tagged caches?

Caches CSE 471
18

A Brief Review of Paging
Program A

Program B

Physical memory
V.p.0

V.p.0

V.p.1

V.p.1

V.p.2

V.p.2

V.p.3

V.p.n

V.p.q

Frame 0
Frame 1
Frame 2

Frame m

Note: In general n, q >> m

Not all virtual pages of a
program are mapped at a
given time

In this example, programs
A and B share frame 0 but
with different virtual page
numbers

Mapping device

Caches CSE 471
19

Mapping Device: Page Tables

• Page tables contain page table entries (PTE):
– Virtual page number (implicit/explicit), physical page

number,valid, protection, dirty, use bits (for LRU-like
replacement), etc.

• Hardware register points to the page table of the running
process

• Earlier system: contiguous (in virtual space) page tables;
Now, multi-level page tables

• In some systems, inverted page tables (with a hash table)
• In all modern systems, page table entries are cached in a

TLB

Caches CSE 471
20

Illustration of Page Table
Program A

Program B

Physical memory
V.p.0

V.p.0

V.p.1

V.p.1

V.p.2

V.p.2

V.p.3

V.p.n

V.p.q

Frame 0
Frame 1
Frame 2

Frame m

1
1
0

1

2
m

0

Page table for
Program A

Valid bits

Page table for
Program B

0
1

1 1

0

m

Note: vp 2 of
Program A used to
be mapped to pp m
but has been
replaced by vp 1 of
Program A;

Vp 0 of Program B
was never mapped

Caches CSE 471
21

Virtual Address Translation

1

Virtual page number Offset

OffsetPhysical frame number

Page table

Caches CSE 471
22

From Virtual Address to Memory Location
(highly abstracted)

ALU

Virtual address

Page
table

Physical address

Memory
hierarchy

Caches CSE 471
23

Translation Look-aside Buffers (TLB)

• Keeping page tables in memory defeats the purpose of
caches
– Needs one memory reference to do the translation

• Hence, introduction of caches to cache page table entries;
these are the TLB’s
– There have been attempts to use the cache itself instead of a TLB

but it has been proven not to be worthwhile

• Nowadays, TLB for instructions and TLB for data
– Some part of the TLB’s reserved for the system

– Of the order of 128 entries, quite associative

Caches CSE 471
24

TLB’s

• TLB miss handled by hardware or by software (e.g., PAL
code in Alpha) or by a combination HW/SW
– TLB miss 10’s-100’s cycles -> no context-switch

• Addressed in parallel with access to the cache

• Since smaller, goes faster
– It’s on the critical path

• For a given TLB size (number of entries)
– Larger page size -> larger mapping range

Caches CSE 471
25

TLB organization

OffsetVirtual page number

Indextag

Physical frame number

v d prot

Copy of PTE

Caches CSE 471
26

From Virtual Address to Memory Location
(highly abstracted; revisited)

ALU

Virtual address

TLB

Physical address

hit

cache

Main
memory

miss

hit

miss

Caches CSE 471
27

Speeding up L1 Access

• Cache can be (speculatively) accessed in parallel with TLB
if its indexing bits are not changed by the virtual-physical
translation

• Cache access (for reads) is pipelined:
– Cycle 1: Access to TLB and access to L1 cache (read data at given

index)

– Cycle 2: Compare tags and if hit, send data to register

Caches CSE 471
28

Virtually Addressed Cache

TLB

data

Cache

PTE

Page Number Offset

Tag Index Dsp

Tag
1 1

2. Compare

Caches CSE 471
29

“Virtual” Caches

• Previous slide: Virtually addressed, physically tagged
– Can be done for small L1, i.e., capacity < (page * ass.)
– Can be done for larger caches if O.S. does a form of page coloring

(see later) such that “index” is the same for synonyms (see below)
– Can also be done more generally (complicated but can be elegant)

• Virtually addressed, virtually tagged caches
– Synonym problem (2 virtual addresses corresponding to the same

physical address). Inconsistency since the same physical location
can be mapped into two different cache blocks

– Can be handled by software (disallow it) or by hardware (with
“pointers”)

– Use of PID’s to only partially flush the cache

Caches CSE 471
30

Synonyms
v.p. x, process A

v.p. y, process B

v.p #

index
Map to same
physical page

Map to synonyms
in the cache

To avoid synonyms, O.S. or hardware enforces
these bits to be the same

Caches CSE 471
31

Obvious Solutions to Decrease Miss Rate

• Increase cache capacity
– Yes, but the larger the cache, the slower the access time

– Solution: Cache hierarchies (even on-chip)

– Increasing L2 capacity can be detrimental on multiprocessor
systems because of increase in coherence misses

• Increase cache associativity
– Yes, but “law of diminishing returns” (after 4-way for small

caches; not sure of the limit for large caches)

– More comparisons needed, i.e., more logic and therefore longer
time to check for hit/miss?

– Make cache look more associative than it really is (see later)

Caches CSE 471
32

What about Cache Line Size?

• For a given application, cache capacity and associativity,
there is an optimal cache line size

• Long cache lines
– Good for spatial locality (code, vectors)

– Reduce compulsory misses (implicit prefetching)

– But takes more time to bring from next level of memory hierarchy
(can be compensated by “critical word first” and subblocks)

– Increase possibility of fragmentation (only fraction of the line is
used – or reused)

– Increase possibility of false-sharing in multiprocessor systems

Caches CSE 471
33

Impact of Associativity

• “Old” conventional wisdom
– Direct-mapped caches are faster; cache access is bottleneck for on-

chip L1; make L1 caches direct mapped

– For on-board (L2) caches, direct-mapped are 10% faster.

• “New” conventional wisdom
– Can make 2-way set-associative caches fast enough for L1. Allows

larger caches to be addressed only with page offset bits

– Looks like time-wise it does not make much difference for L2/L3
caches, hence provide more associativity (but if caches are
extremely large there might not be much benefit)

Caches CSE 471
34

Reducing Cache Misses with more
“Associativity” -- Victim caches

• Victim cache: Small fully-associative buffer “behind” the
L1 cache and “before” the L2 cache

• Of course can also exist “behind” L2 and “before”L3 or
main memory

• Main goal: remove some of the conflict misses in L1
direct-mapped caches (or any cache with low associativity)

Caches CSE 471
35

Index + Tag

Cache

Victim Cache
1. Hit

2.Miss in L1; Hit in VC; Send
data to register and swap

3. From next level of
memory hierarchy

3’. evicted

Caches CSE 471
36

Operation of a Victim Cache

• 1. Hit in L1; Nothing else needed

• 2. Miss in L1 for line at location b, hit in victim cache at
location v: swap contents of b and v (takes an extra cycle)

• 3. Miss in L1, miss in victim cache : load missing item
from next level and put in L1; put entry replaced in L1 in
victim cache; if victim cache is full, evict one of its entries.

• Victim buffer of 4 to 8 entries for a 32KB direct-mapped
cache works well.

Caches CSE 471
37

Bringing more Associativity --
Column-associative Caches

• Split (conceptually) direct-mapped cache into two halves

• Probe first half according to index. On hit proceed
normally

• On miss, probe 2nd half ; If hit, send to register and swap
with entry in first half (takes an extra cycle)

• On miss (on both halves) go to next level, load in 2nd half
and swap

• Slightly more complex than that (need one extra bit in the
tag)

Caches CSE 471
38

Skewed-associative Caches

• Have different mappings for the two (or more) banks of the
set-associative cache

• First mapping conventional; second one “dispersing” the
addresses (XOR a few bits)

• Hit ratio of 2-way skewed as good as 4-way conventional.

Caches CSE 471
39

Reducing Conflicts --Page Coloring

• Interaction of the O.S. with the hardware
• In caches where the cache size > page size * associativity,

bits of the physical address (besides the page offset) are
needed for the index.

• On a page fault, the O.S. selects a mapping such that it
tries to minimize conflicts in the cache .

Caches CSE 471
40

Options for Page Coloring

• Option 1: It assumes that the process faulting is using the
whole cache
– Attempts to map the page such that the cache will access data as if

it were by virtual addresses

• Option 2: do the same thing but hash with bits of the PID
(process identification number)
– Reduce inter-process conflicts (e.g., prevent pages corresponding

to stacks of various processes to map to the same area in the cache)

• Implemented by keeping “bins” of free pages

Caches CSE 471
41

Tolerating/hiding Memory Latency

• One particular technique: prefetching

• Goal: bring data in cache just in time for its use
– Not too early otherwise cache pollution

– Not too late otherwise “hit-wait”cycles

• Under the constraints of (among others)
– Imprecise knowledge of instruction stream

– Imprecise knowledge of data stream

• Hardware/software prefetching
– Works well for regular stride data access

– Difficult when there are pointer-based accesses

Caches CSE 471
42

Why, What, When, Where

• Why?
– cf. goals: Hide memory latency and/or reduce cache misses

• What
– Ideally a semantic object

– Practically a cache line, or a sequence of cache lines

• When
– Ideally, just in time.

– Practically, depends on the prefetching technique

• Where
– In the cache or in a prefetch buffer

Caches CSE 471
43

Hardware Prefetching

• Nextline prefetching for instructions
– Bring missing line and the next one (if not already there)

• OBL “one block look-ahead” for data prefetching
– As Nextline but with more variations -- e.g. depends on whether

prefetching was successful the previous time

• Use of special assists:
– Stream buffers, i.e., FIFO queues to fetch consecutive lines (good

for instructions not that good for data);
– Stream buffers with hardware stride detection mechanisms;
– Use of a reference prediction table
– “Content-less” prefetching etc.

Caches CSE 471
44

Memory Hierarchy in Power 4/5

Sector cache (4
sectors)

?Write-
back

512
B

8-way/12-
way

32 MB/36MBL3

Pseudo-
LRU

Write-
back

128
B

8-way/10-
way

1.5 MB/2 MBL2 Unified

LRUWrite-
throug
h

128
B

2-way/4-way32 KBL1 D-cache

Sector cache (4
sectors)

LRU128
B

Direct/2-way64 KBL1 I-cache

CommentsRepl.
alg

Write
policy

Lin
e
size

AssociativityCapacityCache

220351Main Memory

87123L3

1312L2

11L1 (I and D)

P5 (1.9 GHz)P4 (1.7 GHz)Latency

Caches CSE 471
45

Sequential & Stride Prefetching in Power 4/5

• When prefetch line i from L2 to L1
– Prefetch lines (i+1) and (i+2) from L3 to L2

– Preftch lines (i=3),…(i+6) from main memry to L3

Caches CSE 471
46

Software Prefetching

• Use of special instructions (cache hints: touch in Power
PC, load in register 31 for Alpha, prefetch in Intel micros)

• Non-binding prefetch (in contrast with proposals to
prefetch in registers).
– If an exception occurs, the prefetch is ignored.

• Must be inserted by software (compiler analysis)

• Advantage: no special hardware

• Drawback: more instructions executed.

Caches CSE 471
47

Metrics for Prefetching

• Coverage: Useful prefetches/ number of misses without
prefetching

• Accuracy: useful prefetches/ number of prefetches

• Timeliness: Related to number of hit-wait prefetches

• In addition, the usefulness of prefetching is related to how
critical the prefetched data was

Caches CSE 471
48

Techniques to Reduce Cache Miss Penalty

• Give priority to reads -> Write buffers

• Send the requested word first -> critical word or wrap
around strategy

• Sectored (subblock) caches

• Lock-up free (non-blocking) caches

• Cache hierarchy

Caches CSE 471
49

Write Buffers

• Reads are more important than:
– Writes to memory if WT cache

– Replacement of dirty lines if WB

• Hence buffer the writes in write buffers
– Write buffers = FIFO queues to store data

– Since writes have a tendency to come in bunches (e.g., on
procedure calls, context-switches etc), write buffers must be
“deep”

Caches CSE 471
50

Write Buffers (c’ed)

• Writes from write buffer to next level of the memory
hierarchy can proceed in parallel with computation

• Now loads must check the contents of the write buffer;
also more complex for cache coherency in multiprocessors
– Allow read misses to bypass the writes in the write buffer

Caches CSE 471
51

Critical Word First

• Send first, from next level in memory hierarchy, the word
for which there was a miss

• Send that word directly to CPU register (or IF buffer if it’s
an I-cache miss) as soon as it arrives

• Need a one line buffer to hold the incoming line (and shift
it) before storing it in the cache

Caches CSE 471
52

Sectored (or subblock) Caches

• First cache ever (IBM 360/85 in late 60’s) was a sector
cache
– On a cache miss, send only a subblock, change the tag and

invalidate all other subblocks
– Saves on memory bandwidth

• Reduces number of tags but requires good spatial locality
in application

• Requires status bits (valid, dirty) per subblock
• Might reduce false-sharing in multiprocessors

– But requires metadata status bits for each subblock
– Alpha 21164 L2 uses a dirty bit/16 B for a 64B block size

Caches CSE 471
53

Sector Cache

tag subblock1 subblockn

Status bits, in
particular valid bit

data

Caches CSE 471
54

Lock-up Free Caches

• Proposed in early 1980’s but implemented only within the
last 15 years because quite complex

• Allow cache to have several outstanding miss requests (hit
under miss).
– Cache miss “happens” during EX stage, i.e., longer (unpredictable)

latency
– Important not to slow down operations that don’t depend on results

of the load

• Single hit under miss (HP PA 1700) relatively simple
• For several outstanding misses, require the use of MSHR’s

(Miss Status Holding Register).

Caches CSE 471
55

MSHR’s

• The outstanding misses do not necessarily come back in
the order they were detected
– For example, miss 1 can percolate from L1 to main memory while

miss 2 can be resolved at the L2 level

• Each MSHR must hold information about the particular
miss it will handle such as:
– Info. relative to its placement in the cache

– Info. relative to the “missing” item (word, byte) and where to
forward it (CPU register)

Caches CSE 471
56

Implementation of MSHR’s

• Quite a variety of alternatives
– MIPS 10000, Alpha 21164, Pentium Pro, III and 4

• One particular way of doing it:
– Valid (busy) bit (limited number of MSHR’s – structural hazard)

– Address of the requested cache block

– Index in the cache where the block will go

– Comparator (to prevent using the same MSHR for a miss to the
same block)

– If data to be forwarded to CPU at the same time as in the cache,
needs addresses of registers (one per possible word/byte)

– Valid bits (for writes)

Caches CSE 471
57

Cache Hierarchy

• Two, and even three, levels of caches in most systems

• L2 (or L3, i.e., board-level) very large but since L1 filters
many references, “local” hit rate might appear low (maybe
50%) (compulsory misses still happen)

• In general L2 have longer cache blocks and larger
associativity

• In general L2 caches are write-back, write allocate

Caches CSE 471
58

Characteristics of Cache Hierarchy

• Multi-Level inclusion (MLI) property between off-board
cache (L2 or L3) and on-chip cache(s) (L1 and maybe L2)
– L2 contents must be a superset of L1 contents (or at least have

room to store these contents if L1 is write-back)

– If L1 and L2 are on chip, they could be mutually exclusive (and
inclusion will be with L3)

– MLI very important for cache coherence in multiprocessor systems
(shields the on-chip caches from unnecessary interference)

• Prefetching at L2 level is an interesting challenge (made
easier if L2 tags are kept on-chip)

Caches CSE 471
59

Impact of Branch Prediction on Caches

• If we are on predicted path and:
– An I-cache miss occurs, what should we do: stall or fetch?

– A D-cache miss occurs, what should we do: stall or fetch?

• If we fetch and we are on the right path, it’s a win

• If we fetch and are on the wrong path, it is not necessarily
a loss
– Could be a form of prefetching (if branch was mispredicted, there

is a good chance that that path will be taken later)

– However, the channel between the cache and higher-level of
hierarchy is occupied while something more pressing could be
waiting for it

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

