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Principle of Locality: Memory Hierarchies

• Text and data are not accessed randomly
• Temporal locality

– Recently accessed items will be accessed in the near future (e.g., 
code in loops, top of stack)

• Spatial locality
– Items at addresses close to the addresses of recently accessed items 

will be accessed in the near future (sequential code, elements of 
arrays)

• Leads to memory hierarchy at two main interface levels:
– Processor - Main memory -> Introduction of caches
– Main memory - Secondary memory -> Virtual memory (paging 

systems)
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Processor - Main Memory Hierarchy

• Registers: Those visible to ISA + those renamed by 
hardware

• (Hierarchy of) Caches: plus their enhancements
– Write buffers, victim caches etc…

• TLB’s and their management

• Virtual memory system (O.S. level) and hardware assists 
(page tables)

• Inclusion of information (or space to gather information) 
level per level
– Almost always true
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Questions that Arise at Each Level

• What is the unit of information transferred from level to 
level ?
– Word (byte, double word) to/from a register

– Block (line) to/from cache

– Page table entry + misc. bits to/from TLB

– Page to/from disk

• When is the unit of information transferred from one level 
to a lower level in the hierarchy?
– Generally, on demand (cache miss, page fault)

– Sometimes earlier (prefetching)
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Questions that Arise at Each Level (c’ed)

• Where in the hierarchy is that unit of information placed?
– For registers, directed by ISA and/or register renaming method

– For caches, in general in L1 
• Possibility of hinting to another level (Itanium) or of bypassing the 

cache entirely, or to put in special buffers 

• How do we find if a unit of info is in a given level of the 
hierarchy?
– Depends on mapping; 

– Use of hardware (for caches/TLB) and software structures (page 
tables)
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Questions that Arise at Each Level (c’ed)

• What happens if there is no room for the item we bring in?
– Replacement  algorithm; depends on organization

• What happens when we change the contents of the info?
– i.e., what happens on a write?
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Caches (on-chip, off-chip)

• Caches consist of a set of entries where each entry has:
– line (or block) of data: information contents 

– tag: allows to recognize if the block is there 

– status bits: valid, dirty, state for multiprocessors etc.

• Cache Geometries
– Capacity (or size) of a cache:  number of lines * line size, i.e., the 

cache metadata (tag + status bits) is not counted 

– Associativity

– Line size
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Cache Organizations

• Direct-mapped

• Set-associative

• Fully-associative
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Cache Hit or Cache Miss?

• How to detect if a memory address (a byte address) has a 
valid image in the cache:

• Address is decomposed in 3 fields:
– line offset or displacement (depends on line size)

– index (depends on number of sets and set-associativity)

– tag (the remainder of the address)

• The tag array has a width equal to tag 
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Hit Detection

tag index displ.

Example: cache capacity C, line size b

Direct mapped: displ = log2 b; index = log2(C/ b); tag = 32 -index - displ

N -way S.A: displ = log2 b; index = log2(C/ bN); tag = 32 -index - displ

So what does it mean to have 3-way (N=3) set-associativity?
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Replacement Algorithm

• None for direct-mapped

• Random or LRU or pseudo-LRU for set-associative caches
– Not an important factor for performance for low associativity. Can 

become important for large associativity and large caches
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Writing in a Cache

• On a write hit, should we write:
– In the cache only (write-back) policy

– In the cache and main memory (or higher level cache) (write-
through) policy

• On a write miss, should we
– Allocate a block as in a read (write-allocate)

– Write only in memory (write-around)
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The Main Write Options

• Write-through (aka store-through)
– On a write hit, write both in cache and in memory

– On a write miss, the most frequent option is write-around

– Pro: consistent view of memory (better for I/O); no ECC required
for cache

– Con: more memory traffic (can be alleviated with write buffers)

• Write-back (aka copy-back)
– On a write hit, write only in cache (requires dirty bit)

– On a write miss, most often write-allocate (fetch on miss) but 
variations are possible

– Pro-con reverse of write through
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Classifying the Cache Misses: The 3 C’s

• Compulsory misses (cold start)
– The first time you touch a line. Reduced (for a given cache 

capacity and associativity) by having large lines

• Capacity misses
– The working set is too big for the ideal cache of same capacity and 

line size (i.e., fully associative with optimal replacement 
algorithm). Only remedy: bigger cache!

• Conflict misses (interference)
– Mapping of two lines to the same location. Increasing associativity

decreases this type of misses.

• There is a fourth C: coherence misses (cf. multiprocessors)
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Example of Cache Hierarchies

(1MB, 8,128) WB(16KB,4,64) WTTrace cache 96KBPentium 4

(512KB,8,32) WB(16KB,4,32) WB(16KB,2,32)Pentium III

“glued”(512KB,8,32) WB(16KB,2,32) WB(16KB,2,32)Pentium II

Off-chip up to 8MB(8KB,2,32) WT/WB(8KB,2,32)Pentium

0ff-chip(16MB,1,64)(64KB,2,64)(64KB,2,64)Alpha 21264

(96KB,3,64) WB(8KB, 1, 32) WT(8KB, 1, 32) Alpha 21164

Off-chip (2MB,1,64)(8KB, 1, 32) WT(8KB, 1, 32) Alpha 21064

L2D-CacheI-CacheProcessor
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Cache Performance

• CPI contributed by cache = CPIc

= miss rate * number of cycles to handle the miss

• Another important metric

Average memory access time =  cache hit time * hit rate

+ Miss penalty * (1 - hit rate)
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Improving Cache Performance

• To improve cache performance:
– Decrease miss rate without increasing time to handle the miss 

(more precisely: without increasing average memory access time)
– Decrease time to handle the miss w/o increasing miss rate

• A slew of techniques: hardware and/or software
– Increase capacity, associativity etc.
– Hardware assists (victim caches, write buffers etc.)
– Tolerating memory latency: Prefetching (hardware and software), 

lock-up free caches
– O.S. interaction: mapping of virtual pages to decrease cache 

conflicts
– Compiler interactions: code and data placement; tiling
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Improving L1 Cache Access Time

• Processor generates virtual addresses

• Can cache have virtual address tags?
– What happens on a context switch?

• Can cache and TLB be accessed in parallel?
– Need correspondence between page size and cache size + 

associativity

• What about virtually addressed physically tagged caches?
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A Brief Review  of Paging
Program A

Program B

Physical memory
V.p.0

V.p.0

V.p.1

V.p.1

V.p.2

V.p.2

V.p.3

V.p.n

V.p.q

Frame 0
Frame 1
Frame 2

Frame m

Note: In general n, q >> m

Not all virtual pages of a 
program are mapped at a 
given time

In this example, programs 
A and B share frame 0 but 
with different virtual page 
numbers

Mapping device
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Mapping Device: Page Tables

• Page tables contain page table entries (PTE):
– Virtual page number (implicit/explicit), physical page 

number,valid, protection, dirty, use bits (for LRU-like 
replacement), etc.

• Hardware register points to the page table of the running 
process

• Earlier system: contiguous (in virtual space) page tables; 
Now, multi-level page tables

• In some systems, inverted page tables (with a hash table)
• In all modern systems, page table entries are cached in a 

TLB
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Illustration of Page Table
Program A

Program B

Physical memory
V.p.0

V.p.0

V.p.1

V.p.1

V.p.2

V.p.2

V.p.3

V.p.n

V.p.q

Frame 0
Frame 1
Frame 2

Frame m

1
1
0

1

2
m

0

Page table for 
Program A

Valid bits

Page table for 
Program B

0
1

1 1

0

m

Note: vp 2 of 
Program A used to 
be mapped to pp m 
but has been 
replaced by vp 1 of 
Program A;

Vp 0 of Program B 
was never mapped
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Virtual Address Translation

1

Virtual page number Offset

OffsetPhysical frame number

Page table
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From Virtual Address to Memory Location 
(highly abstracted)

ALU

Virtual address

Page 
table

Physical address

Memory 
hierarchy
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Translation Look-aside Buffers (TLB)

• Keeping page tables in memory defeats the purpose of 
caches 
– Needs one memory reference to do the translation

• Hence, introduction of caches to cache page table entries; 
these are the TLB’s
– There have been attempts to use the cache itself instead of a TLB 

but it has been proven not to be worthwhile

• Nowadays, TLB for instructions and TLB for data
– Some part of the TLB’s reserved for the system

– Of the order of 128 entries, quite associative
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TLB’s

• TLB miss handled by hardware or by software (e.g., PAL 
code in Alpha) or by a combination HW/SW
– TLB miss 10’s-100’s cycles -> no context-switch

• Addressed in parallel with access to the cache

• Since smaller, goes faster 
– It’s on the critical path

• For a given TLB size (number of entries)
– Larger page size -> larger mapping range
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TLB organization

OffsetVirtual page number

Indextag

Physical frame number

v d prot

Copy of PTE
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From Virtual Address to Memory Location 
(highly abstracted; revisited)

ALU

Virtual address

TLB

Physical address

hit

cache

Main 
memory

miss

hit

miss
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Speeding up L1 Access

• Cache can be (speculatively) accessed in parallel with TLB 
if its indexing bits are not changed by the virtual-physical 
translation

• Cache access (for reads) is pipelined:
– Cycle 1: Access to TLB and access to L1 cache (read data at given 

index)

– Cycle 2: Compare tags and if hit, send data to register
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Virtually Addressed Cache

TLB

data

Cache

PTE

Page Number       Offset

Tag             Index        Dsp

Tag
1 1

2. Compare
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“Virtual” Caches

• Previous slide: Virtually addressed, physically tagged
– Can be done for small L1, i.e., capacity < (page * ass.)
– Can be done for larger caches if O.S. does a form of page coloring 

(see later) such that “index” is the same for synonyms (see below)
– Can also be done more generally (complicated but can be elegant)

• Virtually addressed, virtually tagged caches
– Synonym problem (2 virtual addresses corresponding to the same 

physical address). Inconsistency since the same physical location 
can be mapped into two different cache blocks

– Can be handled by software (disallow it) or by hardware (with 
“pointers” )

– Use of PID’s to only partially flush the cache



Caches CSE 471 
30

Synonyms
v.p. x, process A

v.p. y, process B

v.p #

index
Map to same 
physical page

Map to synonyms 
in the cache

To avoid synonyms, O.S. or hardware enforces 
these bits to be the same
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Obvious Solutions to Decrease Miss Rate

• Increase cache capacity
– Yes, but the larger the cache, the slower the access time

– Solution: Cache hierarchies (even on-chip)

– Increasing L2 capacity can be detrimental on multiprocessor 
systems because of increase in coherence misses

• Increase cache associativity
– Yes,  but “law of diminishing returns” (after 4-way for small 

caches; not sure of the limit for large caches)

– More comparisons needed, i.e., more logic and therefore longer 
time to check for hit/miss?

– Make cache look more associative than it really is (see later)
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What about Cache Line Size?

• For a given application, cache capacity and associativity, 
there is an optimal cache line size

• Long cache lines
– Good for spatial locality (code, vectors)

– Reduce compulsory misses (implicit prefetching)

– But takes more time to bring from next level of memory hierarchy
(can be compensated by “critical word first” and subblocks)

– Increase possibility of fragmentation (only fraction of the line is 
used – or reused) 

– Increase possibility of false-sharing in multiprocessor systems
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Impact of Associativity

• “Old” conventional wisdom
– Direct-mapped caches are faster; cache access is bottleneck for on-

chip L1; make L1 caches direct mapped

– For on-board (L2) caches, direct-mapped are 10% faster. 

• “New” conventional wisdom
– Can make 2-way set-associative caches fast enough for L1. Allows 

larger caches to be addressed only with page offset bits 

– Looks like time-wise it does not make much difference for L2/L3 
caches, hence provide more associativity (but if caches are 
extremely large there might not be much benefit)
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Reducing Cache Misses with  more 
“Associativity” -- Victim caches

• Victim cache: Small fully-associative buffer “behind” the 
L1 cache and “before” the L2 cache

• Of course can also exist “behind” L2 and “before”L3 or 
main memory

• Main goal: remove some of the conflict misses in L1 
direct-mapped caches (or any cache with low associativity)
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Index + Tag

Cache

Victim Cache
1. Hit

2.Miss in L1; Hit in VC; Send 
data to register and swap

3. From next level of 
memory hierarchy

3’. evicted
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Operation of a Victim Cache

• 1. Hit in L1; Nothing else needed

• 2. Miss in L1 for line at location b, hit in victim cache at 
location v: swap contents of  b and v (takes an extra cycle) 

• 3. Miss in L1, miss in victim cache : load missing item
from next level and put in L1; put entry replaced in L1 in 
victim cache; if victim cache is full, evict one of its entries.

• Victim buffer of 4 to 8 entries for a 32KB direct-mapped 
cache works well.
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Bringing more Associativity --
Column-associative Caches

• Split (conceptually) direct-mapped cache into two halves

• Probe first half according to index. On hit proceed 
normally

• On miss, probe 2nd half ; If hit, send to register and swap 
with entry in first half (takes an extra cycle)

• On miss (on both halves) go to next level, load in 2nd half 
and swap

• Slightly more complex than that (need one extra bit in the 
tag)
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Skewed-associative Caches

• Have different mappings for the two (or more) banks of the 
set-associative cache 

• First mapping conventional; second one “dispersing” the 
addresses (XOR a few bits)

• Hit ratio of 2-way skewed as good as 4-way conventional.
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Reducing Conflicts --Page Coloring

• Interaction of the O.S. with the hardware
• In caches where the cache size > page size * associativity, 

bits of the physical address (besides the page offset) are 
needed for the index.

• On a page fault, the O.S. selects a mapping such that it 
tries to minimize conflicts in the cache .
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Options for Page Coloring

• Option 1: It assumes that the process faulting is using the 
whole cache 
– Attempts to map the page such that the cache will access data as if 

it were by virtual addresses

• Option 2: do the same thing but hash with bits of the PID 
(process identification number)
– Reduce inter-process conflicts (e.g., prevent pages corresponding 

to stacks of various processes to map to the same area in the cache)

• Implemented by keeping “bins” of free pages
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Tolerating/hiding Memory Latency

• One particular technique: prefetching

• Goal: bring data in cache just in time for its use
– Not too early otherwise cache pollution

– Not too late otherwise “hit-wait”cycles

• Under the constraints of (among others)
– Imprecise knowledge of instruction stream

– Imprecise knowledge of data stream

• Hardware/software prefetching
– Works well for regular stride data access

– Difficult when there are pointer-based accesses
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Why, What, When, Where

• Why?
– cf. goals: Hide memory latency and/or reduce cache misses

• What
– Ideally a semantic object 

– Practically a cache line, or a sequence of cache lines

• When
– Ideally, just in time. 

– Practically, depends on the prefetching technique

• Where
– In the cache or in  a prefetch buffer
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Hardware Prefetching

• Nextline prefetching for instructions 
– Bring missing line and the next one (if not already there)

• OBL “one block look-ahead” for data prefetching
– As Nextline but with more variations -- e.g. depends on whether 

prefetching was successful the previous time

• Use of special assists: 
– Stream buffers,  i.e., FIFO queues to fetch consecutive lines (good 

for instructions not that good for data);
– Stream buffers with hardware stride detection mechanisms; 
– Use of a reference prediction table
– “Content-less” prefetching etc.
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Memory Hierarchy in Power 4/5

Sector cache (4 
sectors)

?Write-
back

512 
B

8-way/12-
way

32 MB/36MBL3

Pseudo-
LRU

Write-
back

128 
B

8-way/10-
way

1.5 MB/2 MBL2 Unified

LRUWrite-
throug
h

128 
B       

2-way/4-way32 KBL1 D-cache

Sector cache (4 
sectors)

LRU128 
B

Direct/2-way64 KBL1 I-cache

CommentsRepl. 
alg

Write 
policy

Lin
e 
size

AssociativityCapacityCache 

220351Main Memory

87123L3

1312L2

11L1 (I and D)

P5 (1.9 GHz)P4 (1.7 GHz)Latency
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Sequential & Stride Prefetching in Power 4/5

• When prefetch line i from L2 to L1
– Prefetch lines (i+1) and (i+2) from L3 to L2

– Preftch lines (i=3),…(i+6) from main memry to L3
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Software Prefetching

• Use of special instructions (cache hints: touch in Power 
PC, load in register 31 for Alpha, prefetch in Intel micros)

• Non-binding prefetch (in contrast with proposals to 
prefetch in registers). 
– If an exception occurs, the prefetch is ignored.

• Must be inserted by software (compiler analysis)

• Advantage: no special hardware

• Drawback: more instructions executed.
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Metrics for Prefetching

• Coverage:  Useful prefetches/ number of misses without 
prefetching

• Accuracy: useful prefetches/ number of prefetches

• Timeliness: Related to number of hit-wait prefetches

• In addition, the usefulness of prefetching is related to how 
critical the prefetched data was
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Techniques to Reduce Cache Miss Penalty

• Give  priority to reads  -> Write buffers

• Send the requested word first -> critical word or wrap
around strategy

• Sectored (subblock) caches

• Lock-up free (non-blocking) caches

• Cache hierarchy
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Write Buffers

• Reads are more important than:
– Writes to memory if WT cache

– Replacement of dirty lines if WB

• Hence buffer the writes in write buffers
– Write buffers = FIFO queues to store data

– Since writes have a tendency to come in bunches (e.g., on 
procedure calls, context-switches etc), write buffers must be 
“deep”
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Write Buffers (c’ed)

• Writes from write buffer to next level of the memory 
hierarchy can proceed in parallel with computation

• Now loads must check the contents of the write buffer; 
also more complex for cache coherency in multiprocessors
– Allow read misses to bypass the writes in the write buffer 
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Critical Word First

• Send first, from next level in memory hierarchy, the word 
for which there was a miss

• Send that word directly to CPU register (or IF buffer if it’s 
an I-cache miss) as soon as it arrives

• Need a one line buffer to hold the incoming line (and shift 
it) before storing it in the cache
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Sectored (or subblock) Caches

• First cache ever (IBM 360/85 in late 60’s) was a sector 
cache
– On a cache miss, send only a subblock, change the tag and 

invalidate all other subblocks
– Saves on memory bandwidth

• Reduces number of tags but requires good spatial locality 
in application

• Requires status bits (valid, dirty) per subblock
• Might reduce false-sharing in multiprocessors

– But requires metadata status bits for each subblock
– Alpha 21164 L2 uses a dirty bit/16 B for a 64B block size 
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Sector Cache

tag subblock1 subblockn

Status bits, in 
particular valid bit

data
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Lock-up Free Caches

• Proposed in early 1980’s but implemented only within the 
last 15 years because quite complex

• Allow cache to have several outstanding miss requests (hit
under miss).
– Cache miss “happens” during EX stage, i.e., longer (unpredictable) 

latency
– Important not to slow down operations that don’t depend on results 

of the load 

• Single hit under miss (HP PA 1700) relatively simple
• For several outstanding misses, require the use of MSHR’s

(Miss Status Holding Register). 
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MSHR’s

• The outstanding misses do not necessarily come back in 
the order they were detected 
– For example, miss 1 can percolate from L1 to main memory while 

miss 2 can be resolved at the L2 level

• Each MSHR must hold information about the particular 
miss it will handle such as:
– Info. relative to its placement in the cache

– Info. relative to the “missing” item (word, byte) and where to 
forward it  (CPU register)
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Implementation of MSHR’s

• Quite a variety of alternatives 
– MIPS 10000, Alpha 21164,  Pentium Pro, III and 4

• One particular way of doing it:
– Valid (busy) bit (limited number of MSHR’s – structural hazard)

– Address of the requested cache block

– Index in the cache where the block will go

– Comparator (to prevent using the same MSHR for a miss to the 
same block)

– If  data to be forwarded to CPU at the same time as in the cache, 
needs addresses of registers (one per possible word/byte) 

– Valid bits (for writes)
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Cache Hierarchy

• Two, and even three, levels of caches in most systems

• L2 (or L3, i.e., board-level) very large but since L1 filters 
many references, “local” hit rate might appear low (maybe 
50%) (compulsory misses still happen)

• In general L2 have longer cache blocks and larger 
associativity

• In general L2 caches are write-back, write allocate



Caches CSE 471 
58

Characteristics of Cache Hierarchy

• Multi-Level inclusion (MLI) property between off-board 
cache (L2 or L3) and on-chip cache(s) (L1 and maybe L2)
– L2 contents must be a superset of L1 contents (or at least have 

room to store these contents if L1 is write-back)

– If L1 and L2 are on chip, they could be mutually exclusive (and 
inclusion will be with L3)

– MLI very important for cache coherence in multiprocessor systems
(shields the on-chip caches from unnecessary interference)

• Prefetching at L2 level is an interesting challenge (made 
easier if L2 tags are kept on-chip)
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Impact of Branch Prediction on Caches

• If we are on predicted path and:
– An I-cache miss occurs, what should we do: stall or fetch?

– A D-cache miss occurs, what should we do: stall or fetch?

• If we fetch and we are on the right path, it’s a win

• If we fetch and are on the wrong path, it is not necessarily 
a loss
– Could be a form of prefetching (if branch was mispredicted, there 

is a good chance that that path will be taken later)

– However, the channel between the cache and higher-level of 
hierarchy is occupied while something more pressing could be 
waiting for it
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