Multiprocessors - Flynn's Taxonomy (1966)

e Single Instruction stream, Single Data stream (SISD)
— Conventional uniprocessor
— Although ILP is exploited
» Single Program Counter -> Single Instruction stream
* Thedataisnot “streaming”
e Single Instruction stream, Multiple Data stream (SIMD)
— Popular for some applications like image processing
— One can construe vector processors to be of the SIMD type.

— MMX extensionsto ISA reflect the SIMD philosophy
* Also apparent in “multimedia’ processors (Equator Map-1000)
— “DataParallel” Programming paradigm
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Fynn's Taxonomy (c’ ed)

e Multiple Instruction stream, Single Data stream (M1SD)
— Until recently no processor that really fits this category

— “Streaming” processors,; each processor executes akernel on a
stream of data

— Maybe VLIW?

« Multiple Instruction stream, Multiple Data stream (MIMD)
— The most general
— Covers:
 Shared-memory multiprocessors

» Message passing multicomputers (including networks of
workstations cooperating on the same problem; grid
computing)
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Shared-memory Multiprocessors

« Shared-Memory = Single shared-address space (extension
of uniprocessor; communication via Load/Store)
e Uniform Memory Access. UMA

— With ashared-bus, it’sthe basis for SMP s (Symmetric
MultiProcessing)

— Cache coherence enforced by “snoopy” protocols
— Number of processors limited by

» Electrical constraints on the load of the bus
e Contention for the bus

— Form the basis for clusters (but in clusters access to memory of
other clustersis not UMA)
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SMP (Symmetric MultiProcessors aka Multis)
Single shared-bus Systems
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Shared-memory Multiprocessors (c’ ed)

e Non-uniform memory access: NUMA
— NUMA-CC: cache coherent (directory-based protocols or SCI)
— NUMA without cache coherence (enforced by software)
— COMA: Cache Memory Only Architecture
— Clusters

 Distributed Shared Memory: DSM

— Most often network of workstations.
— The shared address space is the “virtual address space”
— 0O.S. enforces coherence on a page per page basis
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UMA — Dance-Hall Architectures& NUMA

* Replace the bus by an interconnection network
— Cross-bar
— Mesh
— Perfect shuffle and variants
» Better to improve locality with NUMA, Each processing
element (PE) consists of:
— Processor
— Cache hierarchy
— Memory for local data (private) and shared data

» Cache coherence via directory schemes

Multiprocessors CSE 471



UMA - Dance-Hall Schematic
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Shared-bus

 Number of devicesislimited (length, electrical constraints)

« Thelonger the bus, the alrger number of devices but also
becomes slower because

— Length
— Contention

« Ultrasimplified analysis for contention:
— Q = Processor time between L2 misses; T = bus transaction time
— Then for 1 process P= bus utilization for 1 processor = T/(T+Q)
— For n processors sharing the bus, probability that the busis busy

B(n)=1-(1-P)"
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Cross-bars and Direct I nterconnection
Networks

Maximum concurrency between n processors and m banks
of memory (or cache)

Complexity grows as O(n?)
Logically aset of n multiplexers
But also need of queuing for contending requests

Small cross-bars building blocks for direct interconnection
networks
— Each nodeis at the same distance of every other node
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An O(nlogn) network: Butterfly

]

To go from processor i(xyz
in binary) to processor |
(uvw), start at i and at each
stage k follow either the
high link if the kth bit of
the destination addressis 0
or thelow link if itis 1. For
example the path to go
from processor 4 (100) to
processor 6 (110) is
marked in bold lines.
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|ndirect Interconnection Networks

Nodes are at various distances of each other

Characterized by their dimension
— Various routing mechanisms. For example “higher dimension first”

2D meshes and tori

3D cubes

More dimensions. hypercubes
Fat trees
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Mesh
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Message-passing Systems

* Processors communicate by messages
— Primitives are of the form “send”, “receive”
— The user (programmer) hasto insert the messages
— Message passing libraries (MPI, OpenMP etc.)

e Communication can be;

— Synchronous. The sender must wait for an ack from the receiver
(e.g, in RPC)
— Asynchronous: The sender does not wait for areply to continue
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Shared-memory vs. Message-passing

* An old debate that is not that much important any longer

e Many systems are built to support a mixture of both
paradigms

— “send, receive’ can be supported by O.S. in shared-memory
systems

— “load/store” in virtual address space can be used in a message-
passing system (the message passing library can use “small”
messages to that effect, e.q. passing a pointer to amemory areain
another computer)
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The Pros and Cons

e Shared-memory pros
— Ease of programming (SPMD: Single Program Multiple Data
paradigm)
— Good for communication of small items
— Lessoverhead of O.S.
— Hardware-based cache coherence
» Message-passing pros
— Simpler hardware (more scalable)

— Explicit communication (both good and bad; some programming
languages have primitives for that), easier for |long messages

— Use of message passing libraries
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Caveat about Parallel Processing

Multiprocessors are used to:
— Speedup computations
— Solve larger problems

Speedup

— Timeto execute on 1 processor / Time to execute on N processors

Speedup is limited by the communication/computation
ratio and synchronization

Efficiency
— Speedup / Number of processors
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Amdahl’s Law for Parallel Processing

Recall Amdahl’s law
— If X% of your program is sequential, speedup is bounded by 1/x

At best linear speedup (if no sequential section)

What about superlinear speedup?
— Theoretically impossible

— “Occurs’ because adding a processor might mean adding more
overall memory and caching (e.g., fewer page faults!)

— Haveto be careful about the x% of sequentiality. Might become
lower if the data set increases.

Speedup and Efficiency should have the number of
processors and the size of the input set as parameters
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Chip MultiProcessors (CMPs)

Multiprocessors vs. multicores
— Multiprocessors have private cache hierarchy (on chip)
— Multicores have shared L2 (on chop)
How many processors
— Typically today 2to 4
— Tomorrow 8to 16
— Next decade ?7?7?
| nterconnection
— Today cross-bar
— Tomorrow ?7?
Biggest problems
— Programming (parallel programming language)
— Applications that require parallelism
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