Multiprocessors - Flynn's Taxonomy (1966)

e Single Instruction stream, Single Data stream (SISD)
— Conventional uniprocessor
— Although ILP is exploited
» Single Program Counter -> Single Instruction stream
* Thedataisnot “streaming”
e Single Instruction stream, Multiple Data stream (SIMD)
— Popular for some applications like image processing
— One can construe vector processors to be of the SIMD type.

— MMX extensionsto ISA reflect the SIMD philosophy
* Also apparent in “multimedia’ processors (Equator Map-1000)
— “DataParallel” Programming paradigm

Multiprocessors CSE 471



Fynn's Taxonomy (c’ ed)

e Multiple Instruction stream, Single Data stream (M1SD)
— Until recently no processor that really fits this category

— “Streaming” processors,; each processor executes akernel on a
stream of data

— Maybe VLIW?

« Multiple Instruction stream, Multiple Data stream (MIMD)
— The most general
— Covers:
 Shared-memory multiprocessors

» Message passing multicomputers (including networks of
workstations cooperating on the same problem; grid
computing)

Multiprocessors CSE 471 2



Shared-memory Multiprocessors

« Shared-Memory = Single shared-address space (extension
of uniprocessor; communication via Load/Store)
e Uniform Memory Access. UMA

— With ashared-bus, it’sthe basis for SMP s (Symmetric
MultiProcessing)

— Cache coherence enforced by “snoopy” protocols
— Number of processors limited by

» Electrical constraints on the load of the bus
e Contention for the bus

— Form the basis for clusters (but in clusters access to memory of
other clustersis not UMA)

Multiprocessors CSE 471



SMP (Symmetric MultiProcessors aka Multis)
Single shared-bus Systems

B Caches

--Proc--

Shared-bus

—

|nterleaved
Memory

Multiprocessors CSE 471

|/O adapter



Shared-memory Multiprocessors (c’ ed)

e Non-uniform memory access: NUMA
— NUMA-CC: cache coherent (directory-based protocols or SCI)
— NUMA without cache coherence (enforced by software)
— COMA: Cache Memory Only Architecture
— Clusters

 Distributed Shared Memory: DSM

— Most often network of workstations.
— The shared address space is the “virtual address space”
— 0O.S. enforces coherence on a page per page basis

Multiprocessors CSE 471



UMA — Dance-Hall Architectures& NUMA

* Replace the bus by an interconnection network
— Cross-bar
— Mesh
— Perfect shuffle and variants
» Better to improve locality with NUMA, Each processing
element (PE) consists of:
— Processor
— Cache hierarchy
— Memory for local data (private) and shared data

» Cache coherence via directory schemes

Multiprocessors CSE 471



UMA - Dance-Hall Schematic

—2 2 P 7

Caches

Inter-
connect

Main memory
modules

Multiprocessors CSE 471



Processors O

caches

Local
memories

Inter-
connect

NUMA

o OO

ﬂ)

O

S D

Multiprocessors CSE 471




Shared-bus

 Number of devicesislimited (length, electrical constraints)

« Thelonger the bus, the alrger number of devices but also
becomes slower because

— Length
— Contention

« Ultrasimplified analysis for contention:
— Q = Processor time between L2 misses; T = bus transaction time
— Then for 1 process P= bus utilization for 1 processor = T/(T+Q)
— For n processors sharing the bus, probability that the busis busy

B(n)=1-(1-P)"

Multiprocessors CSE 471 9



Cross-bars and Direct I nterconnection
Networks

Maximum concurrency between n processors and m banks
of memory (or cache)

Complexity grows as O(n?)
Logically aset of n multiplexers
But also need of queuing for contending requests

Small cross-bars building blocks for direct interconnection
networks
— Each nodeis at the same distance of every other node

Multiprocessors CSE 471 10



An O(nlogn) network: Butterfly

]

To go from processor i(xyz
in binary) to processor |
(uvw), start at i and at each
stage k follow either the
high link if the kth bit of
the destination addressis 0
or thelow link if itis 1. For
example the path to go
from processor 4 (100) to
processor 6 (110) is
marked in bold lines.

Multiprocessors CSE 471

11



|ndirect Interconnection Networks

Nodes are at various distances of each other

Characterized by their dimension
— Various routing mechanisms. For example “higher dimension first”

2D meshes and tori

3D cubes

More dimensions. hypercubes
Fat trees

Multiprocessors CSE 471 12



Mesh

Multiprocessors CSE 471

13



Message-passing Systems

* Processors communicate by messages
— Primitives are of the form “send”, “receive”
— The user (programmer) hasto insert the messages
— Message passing libraries (MPI, OpenMP etc.)

e Communication can be;

— Synchronous. The sender must wait for an ack from the receiver
(e.g, in RPC)
— Asynchronous: The sender does not wait for areply to continue

Multiprocessors CSE 471

14



Shared-memory vs. Message-passing

* An old debate that is not that much important any longer

e Many systems are built to support a mixture of both
paradigms

— “send, receive’ can be supported by O.S. in shared-memory
systems

— “load/store” in virtual address space can be used in a message-
passing system (the message passing library can use “small”
messages to that effect, e.q. passing a pointer to amemory areain
another computer)

Multiprocessors CSE 471 15



The Pros and Cons

e Shared-memory pros
— Ease of programming (SPMD: Single Program Multiple Data
paradigm)
— Good for communication of small items
— Lessoverhead of O.S.
— Hardware-based cache coherence
» Message-passing pros
— Simpler hardware (more scalable)

— Explicit communication (both good and bad; some programming
languages have primitives for that), easier for |long messages

— Use of message passing libraries

Multiprocessors CSE 471



Caveat about Parallel Processing

Multiprocessors are used to:
— Speedup computations
— Solve larger problems

Speedup

— Timeto execute on 1 processor / Time to execute on N processors

Speedup is limited by the communication/computation
ratio and synchronization

Efficiency
— Speedup / Number of processors

Multiprocessors CSE 471 17



Amdahl’s Law for Parallel Processing

Recall Amdahl’s law
— If X% of your program is sequential, speedup is bounded by 1/x

At best linear speedup (if no sequential section)

What about superlinear speedup?
— Theoretically impossible

— “Occurs’ because adding a processor might mean adding more
overall memory and caching (e.g., fewer page faults!)

— Haveto be careful about the x% of sequentiality. Might become
lower if the data set increases.

Speedup and Efficiency should have the number of
processors and the size of the input set as parameters

Multiprocessors CSE 471

18



Chip MultiProcessors (CMPs)

Multiprocessors vs. multicores
— Multiprocessors have private cache hierarchy (on chip)
— Multicores have shared L2 (on chop)
How many processors
— Typically today 2to 4
— Tomorrow 8to 16
— Next decade ?7?7?
| nterconnection
— Today cross-bar
— Tomorrow ?7?
Biggest problems
— Programming (parallel programming language)
— Applications that require parallelism

Multiprocessors CSE 471

19



This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.



http://www.win2pdf.com

