
Multiprocessors CSE 471 1

Multiprocessors - Flynn’s Taxonomy (1966)

• Single Instruction stream, Single Data stream (SISD)
– Conventional uniprocessor

– Although ILP is exploited
• Single Program Counter -> Single Instruction stream

• The data is not “streaming”

• Single Instruction stream, Multiple Data stream (SIMD)
– Popular for some applications like image processing

– One can construe vector processors to be of the SIMD type.

– MMX extensions to ISA reflect the SIMD philosophy
• Also apparent in “multimedia” processors (Equator Map-1000)

– “Data Parallel” Programming paradigm

Multiprocessors CSE 471 2

Flynn’s Taxonomy (c’ed)

• Multiple Instruction stream, Single Data stream (MISD)
– Until recently no processor that really fits this category
– “Streaming” processors; each processor executes a kernel on a

stream of data
– Maybe VLIW?

• Multiple Instruction stream, Multiple Data stream (MIMD)
– The most general
– Covers:

• Shared-memory multiprocessors
• Message passing multicomputers (including networks of

workstations cooperating on the same problem; grid
computing)

Multiprocessors CSE 471 3

Shared-memory Multiprocessors

• Shared-Memory = Single shared-address space (extension
of uniprocessor; communication via Load/Store)

• Uniform Memory Access: UMA
– With a shared-bus, it’s the basis for SMP’s (Symmetric

MultiProcessing)

– Cache coherence enforced by “snoopy” protocols

– Number of processors limited by
• Electrical constraints on the load of the bus

• Contention for the bus

– Form the basis for clusters (but in clusters access to memory of
other clusters is not UMA)

Multiprocessors CSE 471 4

SMP (Symmetric MultiProcessors aka Multis)
Single shared-bus Systems

Proc.

Caches

Shared-bus

I/O adapterInterleaved
Memory

Multiprocessors CSE 471 5

Shared-memory Multiprocessors (c’ed)

• Non-uniform memory access: NUMA
– NUMA-CC: cache coherent (directory-based protocols or SCI)

– NUMA without cache coherence (enforced by software)

– COMA: Cache Memory Only Architecture

– Clusters

• Distributed Shared Memory: DSM
– Most often network of workstations.

– The shared address space is the “virtual address space”

– O.S. enforces coherence on a page per page basis

Multiprocessors CSE 471 6

UMA – Dance-Hall Architectures & NUMA

• Replace the bus by an interconnection network
– Cross-bar

– Mesh

– Perfect shuffle and variants

• Better to improve locality with NUMA, Each processing
element (PE) consists of:
– Processor

– Cache hierarchy

– Memory for local data (private) and shared data

• Cache coherence via directory schemes

Multiprocessors CSE 471 7

UMA - Dance-Hall Schematic

…

Processors

Caches

Inter-
connect

Main memory
modules

…

Multiprocessors CSE 471 8

NUMA

…

Inter-
connect

…

Processors

caches

Local
memories

Multiprocessors CSE 471 9

Shared-bus

• Number of devices is limited (length, electrical constraints)

• The longer the bus, the alrger number of devices but also
becomes slower because
– Length

– Contention

• Ultra simplified analysis for contention:
– Q = Processor time between L2 misses; T = bus transaction time

– Then for 1 process P= bus utilization for 1 processor = T/(T+Q)

– For n processors sharing the bus, probability that the bus is busy

B(n) = 1 – (1-P)n

Multiprocessors CSE 471 10

Cross-bars and Direct Interconnection
Networks

• Maximum concurrency between n processors and m banks
of memory (or cache)

• Complexity grows as O(n2)

• Logically a set of n multiplexers

• But also need of queuing for contending requests

• Small cross-bars building blocks for direct interconnection
networks
– Each node is at the same distance of every other node

Multiprocessors CSE 471 11

An O(nlogn) network: Butterfly

0

1

7

2

3

4

5

6

To go from processor i(xyz
in binary) to processor j
(uvw), start at i and at each
stage k follow either the
high link if the kth bit of
the destination address is 0
or the low link if it is 1. For
example the path to go
from processor 4 (100) to
processor 6 (110) is
marked in bold lines.

Multiprocessors CSE 471 12

Indirect Interconnection Networks

• Nodes are at various distances of each other

• Characterized by their dimension
– Various routing mechanisms. For example “higher dimension first”

• 2D meshes and tori

• 3D cubes

• More dimensions: hypercubes

• Fat trees

Multiprocessors CSE 471 13

Mesh

Multiprocessors CSE 471 14

Message-passing Systems

• Processors communicate by messages
– Primitives are of the form “send”, “receive”

– The user (programmer) has to insert the messages

– Message passing libraries (MPI, OpenMP etc.)

• Communication can be:
– Synchronous: The sender must wait for an ack from the receiver

(e.g, in RPC)

– Asynchronous: The sender does not wait for a reply to continue

Multiprocessors CSE 471 15

Shared-memory vs. Message-passing

• An old debate that is not that much important any longer

• Many systems are built to support a mixture of both
paradigms
– “send, receive” can be supported by O.S. in shared-memory

systems

– “load/store” in virtual address space can be used in a message-
passing system (the message passing library can use “small”
messages to that effect, e.g. passing a pointer to a memory area in
another computer)

Multiprocessors CSE 471 16

The Pros and Cons

• Shared-memory pros
– Ease of programming (SPMD: Single Program Multiple Data

paradigm)

– Good for communication of small items

– Less overhead of O.S.

– Hardware-based cache coherence

• Message-passing pros
– Simpler hardware (more scalable)

– Explicit communication (both good and bad; some programming
languages have primitives for that), easier for long messages

– Use of message passing libraries

Multiprocessors CSE 471 17

Caveat about Parallel Processing

• Multiprocessors are used to:
– Speedup computations

– Solve larger problems

• Speedup
– Time to execute on 1 processor / Time to execute on N processors

• Speedup is limited by the communication/computation
ratio and synchronization

• Efficiency
– Speedup / Number of processors

Multiprocessors CSE 471 18

Amdahl’s Law for Parallel Processing

• Recall Amdahl’s law
– If x% of your program is sequential, speedup is bounded by 1/x

• At best linear speedup (if no sequential section)
• What about superlinear speedup?

– Theoretically impossible
– “Occurs” because adding a processor might mean adding more

overall memory and caching (e.g., fewer page faults!)
– Have to be careful about the x% of sequentiality. Might become

lower if the data set increases.

• Speedup and Efficiency should have the number of
processors and the size of the input set as parameters

Multiprocessors CSE 471 19

Chip MultiProcessors (CMPs)

• Multiprocessors vs. multicores
– Multiprocessors have private cache hierarchy (on chip)
– Multicores have shared L2 (on chop)

• How many processors
– Typically today 2 to 4
– Tomorrow 8 to 16
– Next decade ???

• Interconnection
– Today cross-bar
– Tomorrow ???

• Biggest problems
– Programming (parallel programming language)
– Applications that require parallelism

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

