
Cache Coherence. CSE 471 1

Cache Coherence

• Recall the memory wall
– In multiprocessors the wall might even be higher!

– Contention on shared-bus

– Time to travel through an interconnection network

• In addition to the 3 C’s of the cache hierarchy
– Cache coherence misses

• Cache coherence protocols
– Shared-bus: Snoopy protocols

– Other interconnection schemes: Directory protocols

Cache Coherence. CSE 471 2

Cache Coherence: The problem

P1 P2 P3 P4

Mem.

Initial state: P2 reads A; P3 reads A (note already a decision to
make: who sends the value of A?)

A

A A

Cache Coherence. CSE 471 3

Cache coherence (shared-bus)

• Now P2 wants to write A

• Two choices:
– Broadcast the new value of A on the bus; value of A snooped by

cache of P3: Write-update (or write broadcast) protocol (resembles
write-through). Memory is also updated.

– Broadcast an invalidation message with the address of A; the
address snooped by cache of P3 which invalidates its copy of A:
Write-invalidate protocols. Note that the copy in memory is not
up-to-date any longer (resembles write-back).

• If instead of P2 wanting to write A, we had a write miss in
P4 for A, the same two choices of protocol apply.

Cache Coherence. CSE 471 4

Write-update
P2 and P3 have read line A; P4 has a write miss on an element of line A

P1 P2 P3 P4

Mem.

A’

A’ A’ A’

A write miss looks like a read
miss (bring the old value of A in
P4) followed by a write hit and a
broadcast of the new value of A

Cache Coherence. CSE 471 5

Write-invalidate
P2 and P3 have read line A; P4 has a write miss on an element of line A

P1 P2 P3 P4

Mem.

Invalid lines

A

A A A’

A write miss looks like a read
miss (bring the old value of A in
P4) followed by a write hit and
an invalidation

Cache Coherence. CSE 471 6

Snoopy Cache Coherence Protocols

• Associate states with each cache line; for example:
– Invalid (I)

– Shared (S) (or Clean) one or more copies are up to date

– Modified (M) (or Dirty) exists in only one cache

• Fourth state (and sometimes more) for performance
purposes
– MOESI protocols: E stands for Exclusive and O for Ownership

Cache Coherence. CSE 471 7

State Transitions for a Given Cache Line

• Those incurred as answers to processor associated with the
cache
– Read miss, write miss, write on shared line

• Those incurred by snooping on the bus as result of other
processor actions, e.g.,
– Read miss by Q might make P’s line transit from M to S

– Write miss by Q might make P’s line transit from M or S to I
(write invalidate protocol)

Cache Coherence. CSE 471 8

Basic Write-invalidate Protocol (write-back
write-allocate caches)

• Needs 3 states associated with each cache line
– Invalid

– Shared (read only – can be shared)

– Modified (only valid copy in the system)

• Need to decompose state transitions into those:
– Induced by the processor attached to the cache

– Induced by snooping on the bus

Cache Coherence. CSE 471 9

Basic 3 State Protocol: Processor Actions

Inv.

Modified

Shared

Read miss (data might
come from mem. or from
another cache)

Write miss (data might
come from mem. or from
another cache)

Read miss

Write miss

Transitions from
Invalid state won’t

be shown in
forthcoming figures

Read hit

Read/write
hit

Write hit (will also send
a transaction on bus)

Read miss and Write miss
will send corresponding
transactions on the bus

Cache Coherence. CSE 471 10

Basic 3 State Protocol: Transitions from Bus
Snooping

Inv.

Modified

SharedBus write

Bus write
Bus read

Cache Coherence. CSE 471 11

Snoopy protocol implementation

• Simple 3-state fsm?

• Yes but
– Many more “internal states” because of write buffers, lock-up free

caches, prefetching, split-transaction bus etc.

– Example: split-transaction bus. Caches A and B have line L in state
I and cache C has it in state S. Both A and B want to write L at the
same time.

– Split-transaction means for A and B (in this case) “Request to
read” and for C “Data transfer” But the 2 “Request for read”
should not arrive at C before the “Data transfer”. Need for
intermediate states

Cache Coherence. CSE 471 12

An Example of Write-invalidate Protocol: the
Illinois Protocol

• States:
– Invalid

– (Valid)Exclusive (clean, only copy)

– Shared (clean, possibly other copies)

– Modified (modified, only copy)

– In the MOESI notation, a MESI protocol

Cache Coherence. CSE 471 13

Illinois Protocol: Design Decisions

• The Exclusive state is there to enhance performance
– On a write to a line in E state, no need to send an invalidation

message (occurs often for private variables).

• On a read miss with no cache having the line in Modified
state
– Who sends the data: memory or cache (if any)?

• Answer: cache for that particular protocol; other protocols
might use the memory

– If more than one cache, which one?

• Answer: the first to grab the bus (tri-state devices)

Cache Coherence. CSE 471 14

Illinois Protocol: State Diagram

I E

SM

Read miss from mem.

Write hit

Write miss

Read hit

Read/Write
Hit

Bus read miss

Write hit

Read miss from cache

Read hit
and bus
read miss

Bus read miss

bus write miss

bus write
miss

bus write
miss

Proc. induced

Bus induced

Cache Coherence. CSE 471 15

Example: P2 reads A (A only in memory)

I E

SM

Read miss from mem.

Write hit

Write miss

Read hit

Hit

Bus read miss

Write hit

Read miss from cache

Read hit
and bus
read miss

Bus read miss

bus write miss

bus write
miss

bus write
miss

Proc. induced

Bus induced

Cache Coherence. CSE 471 16

Example: P3 reads A (A comes from P2)

I E

SM

Read miss from mem.

Write hit

Write miss

Read hit

Hit

Bus read miss

Write hit

Read miss from cache

Read hit
and bus
read miss

Bus read miss

bus write miss

bus write
miss

bus write
miss

Proc. induced

Bus induced

Both P2 and P3
will have A in

state S

Cache Coherence. CSE 471 17

Example: P4 writes A (A comes from P2)

I E

SM

Read miss from mem.

Write hit

Write miss

Read hit

Hit

Bus read miss

Write hit

Read miss from cache

Read hit
and bus
read miss

Bus read miss

bus write miss

bus write
miss

bus write
miss

Proc. induced

Bus induced

P2 and P3 will
have A in state
I; P4 will be in

state M

Cache Coherence. CSE 471 18

Cache Parameters for Multiprocessors

• In addition to the 3 C’s types of misses, add a 4th C:
coherence misses

• As cache sizes increase, the misses due to the 3 C’s
decrease but coherence misses increase

• Shared data has been shown to have less spatial locality
than private data; hence large line sizes could be
detrimental

• Large line sizes induce more false sharing
– P1 writes the first part of line A; P2 writes the second part. From

the coherence protocol viewpoint, both look like “write A”

Cache Coherence. CSE 471 19

Performance of Snoopy Protocols

• Protocol performance depends on the length of a write run

• Write run: sequence of write references by 1 processor to a
shared address (or shared line) uninterrupted by either
access by another processor or replacement
– Long write runs better to have write invalidate

– Short write runs better to have write update

• There have been proposals to make the choice between
protocols at run time
– Competitive algorithms

Cache Coherence. CSE 471 20

What About Cache Hierarchies?

• Implement snoopy protocol at L2 (board-level) cache

• Impose multilevel inclusion property
– Encode in L2 whether the line (or part of it if lines in L2 are longer

than lines in L1) is in L1 (1 bit/line or subblock)

– Disrupt L1 on bus transactions from other processors only if data is
there, i.e., L2 shields L1 from unnecessary checks

– Total inclusion might be expensive (need for large associativity) if
several L1’s share a common L2 (like in clusters). Instead use
partial inclusion (i.e., possibility of slightly over invalidating L1)

Cache Coherence. CSE 471 21

Cache Coherence in NUMA Machines

• Snooping is not possible on media other than bus/ring

• Broadcast / multicast is not that easy
– In Multistage Interconnection Networks (MINs), potential for

message blocking is very large

– In mesh-like networks, broadcast to every node is very inefficient

• How to enforce cache coherence
– Having no caches (Tera MTA)

– By software:disallow/limit caching of shared variables (Cray 3TD)

– By hardware: having a data structure (a directory) that records the
state of each line

Cache Coherence. CSE 471 22

Information Needed for Cache Coherence

• What information should the directory contain
– At the very least whether a line is cached or not

– Whether the cache copy – or copies – is shared (clean) or modified

• Where are the copies of the line
– Directory structure associated with the line in memory

– Linked list of all copies in the caches, including the one in memory

Cache Coherence. CSE 471 23

Full Directory

• Full information associated with each line in memory

• Entry in the directory: state vector associated with the line
– For an n processor system, an (n+1) bit vector

– Bit 0, clean/dirty

– Bits 1-n: “location” vector ; Bit i set if ith cache has a copy

– Protocol is write-invalidate

• Memory overhead:
– For a 64 processor system, 65 bits / block

– If a block is 64 bytes, overhead = 65 / (64 * 8), i.e., over 10%

– This data structure is not scalable (but see later)

Cache Coherence. CSE 471 24

Home Node

• Definition
– Home node: the node that contains the initial value of the line as

determined by its physical address

– Home node contains the directory entry for a line

– Remote node: any other node

• On a cache miss (read and write), the request for data will
be sent to the home node

• If a line has to be evicted from a cache, and it is dirty, its
value should be written back in the home node

Cache Coherence. CSE 471 25

Basic protocol

• Assume write-back, write-allocate caches with a
clean/dirty bit per line

• Read hit: Do nothing

• Write hit on dirty line: Do nothing

Cache Coherence. CSE 471 26

Basic Protocol – Read Miss on
Uncached/clean Line

• Cache i has a read miss on an uncached line (state vector
full of 0’s)
– The home node responds with the data

– Add entry in directory (set clean and ith bit)

• Cache i has a read miss on a clean line (clean bit on in
directory; at least one of the other bits on)
– The home node responds with the data

– Add entry in directory (set ith bit)

Cache Coherence. CSE 471 27

Basic Protocol – Read Miss on Dirty Line

• Cache i has a read miss on a dirty line
– If dirty line is in home node, say node j (dirty and jth bits on) home

node:
• Updates memory (write back from its own cache j)

• Changes the line encoding (dirty -> clean and set ith bit);

• Sends data to cache i (1-hop)

– If dirty line is not in home node but is in cache k (dirty and kth bits
on) then the home node:

• Asks cache k to send the line and updates memory

• Change entry in directory (dirty -> clean and set ith bit);

• Sends the data (2-hops)

Cache Coherence. CSE 471 28

Basic Protocol – Write Miss on
Uncached/clean Block

• Cache i has a write miss on an uncached line (state vector
full of 0’s)
– The home node responds with the data
– Add entry in directory (set dirty and ith bits)

• Cache i has a write miss on a clean line (clean bit on; at
least one of the other bits on)
– Home node sends an invalidate message to all caches whose bits

are on in the state vector (this is a series of messages)
– The home node responds with the data
– Change entry in directory (clean -> dirty and set ith bit)

• Note : the memory is not up-to-date

Cache Coherence. CSE 471 29

Basic Protocol – Write Miss on Dirty Block

• Cache i has a write miss on a dirty line
– If dirty line is in home node, say node j (dirty and jth bits on) home

node:
• Updates memory (write back from its own cache j)

• Changes the line encoding (clear jth bit and set ith bit);

• Sends data to cache i (1-hop)

– If dirty line is not in home node but is in cache k (dirty and kth bits
on), then the home node:

• Asks cache k to send the line and updates memory

• Change entry in directory (clear kth bit and set ith bit);

• Sends the data (2-hops)

Cache Coherence. CSE 471 30

Basic Protocol – Request to Write a Clean
Block

• Cache i wants to write one of its lines which is clean
– Known because clean/dirty bits also exist in the cache metadata

– Perform as in write miss on a clean block except that the memory
does not have to send the data

Cache Coherence. CSE 471 31

Basic Protocol - Replacing a Line

• What happens when a line is replaced
– If dirty, it is of course written back and its state becomes a vector

of 0’s

– If clean could either “do nothing” but then encoding is wrong
leading to possibly unneeded invalidations (and acks) or could
send message and modify state vector accordingly (reset
corresponding bit)

– Acks are necessary to ensure correctness mostly if messages can be
delivered out of order

Cache Coherence. CSE 471 32

The Most Economical (Memory-wise)
Protocol

• Recall the minimal number of states needed
– Not cached anywhere (i.e., valid in home memory)
– Cached in one or more caches but not modified (clean)
– Cached in one cache and modified (dirty)

• Simply encode the states (2-bit protocol) and perform
broadcast invalidations (expensive because most often the
data is not shared by many processors)

• Fourth state to enhance performance, say exclusive (E):
– Cached in one cache only and still clean: no need to broadcast

invalidations on a request for that cache to write its clean line. The
cache metadata must include an Exclusive state also (set on
reading a line that is not cached anywhere)

Cache Coherence. CSE 471 33

2-bit Protocol

• Differences with full directory protocol
– Of course no bit setting in “location” vector

– On a read miss to uncached line go to state exclusive (in directory
and in cache)

– On “request to write a clean line” from a cache that has the line in
exclusive state, if the line is still in exclusive state in the directory,
no need to broadcast invalidations

– On a read miss to an exclusive line, change state to clean

– On a write miss to clean and to exclusive line from another cache
and read/write miss to dirty line, need to send a broadcast
invalidate signal to all processors; in the case of dirty, the one with
the copy of the line will send it back along with its ack.

Cache Coherence. CSE 471 34

Need for Partial Directories

• Full directory not scalable.
– Location vector depends on number of processors

– Might become too much memory overhead

• 2-bit protocol invalidations are costly

• Observation: Sharing is often limited to a small number of
processors
– Instead of full directory, have room for a limited number of

processor id’s.

Cache Coherence. CSE 471 35

Examples of Partial Directories

• Coarse bit-vector
– Share a “location” bit among 2 or 4 or 8 processors etc.

– Advantage: scalable since fixed amount of memory/line

• Dynamic pointer (many variations)
– Directory for a block has 1 bit for local cache, one or more fields

for a limited number of other caches, and possibly a pointer to a
linked list in memory for overflow.

– Need to “reclaim” pointers on clean replacements and/or to
invalidate blindly if there is overflow

– Protocols are DiriB (i pointers and broadcast) or DiriNB (i pointers
and No Broadcast, i.e., forced invalidations)

Cache Coherence. CSE 471 36

Directories in the Cache -- The SCI Approach

• Copies of lines residing in various caches are linked via a
doubly linked list
– Doubly linked so that it is easy to insert/delete

• Header in the line’s home node memory
– Insertions “between” home node and new cache

• Economical in memory space
– Proportional to cache space rather than memory space

• Invalidations can be lengthy (list traversal)

Cache Coherence. CSE 471 37

A Caveat about Cache Coherence Protocols

• They are more complex in the details than they look!

• Snoopy protocols
– Writes are not atomic (first detect write miss and send request on

the bus; then get line and write data -- only then should the line
become dirty)

– The cache controller must implement “pending states” for
situations which would allow more than one cache to write data in
a linek, or replace a dirty line, i.e., write in memory

– Things become more complex for split-transaction buses

– Things become even more complex for lock-up free caches (but
it’s manageable)

Cache Coherence. CSE 471 38

Subtleties in Directory Protocols

• No transaction is atomic.
• If they were treated as atomic, deadlock could occur

– Assume line A from home node X is dirty in P1
– Assume line B from home node Y is dirty in P2
– P1 reads miss on B and P2 reads miss on A
– Home node Y generates a “purge” for B in P2 and Home node X

generates a “purge” for A in P1
– Both P1 and P2 wait for their read misses and cannot answer the

home node purges hence deadlock.

• So assume non-atomicity of transactions and allow only
one in-flight transaction per line (nack any other while one
is in progress)

Cache Coherence. CSE 471 39

Problems with Buffering

• Directory and cache controllers might have to send/receive
many messages at the same time
– Protocols must take into account finite amount of buffers

– This leads to possibility of deadlocks

– This is even more important for 2-bit protocol with lots of
broadcasts

– Solutions involve one or more of the following
• separate networks for requests and replies so that requests don’t block

replies which free buffer space

• each request reserves buffer room for its reply

• use of nacks and of retries

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

