
1

Spring 2007 CSE 471 - Dataflow Machines 1

Von Neumann Execution Model

Fetch:
• send PC to memory
• transfer instruction from memory to CPU
• increment PC

Decode & read ALU input sources

Execute
• an ALU operation
• memory operation
• branch target calculation

Store the result in a register
• from the ALU or memory

Spring 2007 CSE 471 - Dataflow Machines 2

Von Neumann Execution Model

Program is a linear series of addressable instructions
• next instruction to be executed is pointed to by the PC
• send PC to memory
• next instruction to execute depends on what happened during the

execution of the current instruction

Instruction operands reside in a centralized, global memory (GPRs)

2

Spring 2007 CSE 471 - Dataflow Machines 3

Dataflow Execution Model

Instructions are already in the processor:

Operands arrive from a producer instruction via a network

Check to see if all an instruction’s operands are there

Execute
• an ALU operation
• memory operation
• branch target calculation

Send the result
• to the consumer instructions or memory

Spring 2007 CSE 471 - Dataflow Machines 4

Dataflow Execution Model

Execution is driven by the availability of input operands
• operands are consumed
• output is generated
• no PC

Result operands are passed directly to consumer instructions
• no register file

3

Spring 2007 CSE 471 - Dataflow Machines 5

Dataflow Computers

Motivation:
• exploit instruction-level parallelism on a massive scale
• more fully utilize all processing elements

Believed this was possible if:
• expose instruction-level parallelism by using a functional-style

programming language
• no side effects; only restrictions were producer-consumer

• scheduled code for execution on the hardware greedily
• hardware support for data-driven execution

Spring 2007 CSE 471 - Dataflow Machines 6

Dataflow Execution

All computation is data-driven.
• binary is represented as a directed graph

• nodes are operations
• values travel on arcs

• WaveScalar instruction

+

b

a+b

a

opcode destination1 destination2

4

Spring 2007 CSE 471 - Dataflow Machines 7

Dataflow Execution

Data-dependent operations are connected, producer to consumer
Code & initial values loaded into memory
Execute according to the dataflow firing rule

• when operands of an instruction have arrived on all input arcs,
instruction may execute

• value on input arcs is removed
• computed value placed on output arc

+

Spring 2007 CSE 471 - Dataflow Machines 8

Dataflow Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

5

Spring 2007 CSE 471 - Dataflow Machines 9

Dataflow Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2007 CSE 471 - Dataflow Machines 10

Dataflow Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

6

Spring 2007 CSE 471 - Dataflow Machines 11

Dataflow Execution

Control
• steer (ρ) merge (φ)

• convert control dependence to data dependence with value-
steering instructions

• execute one path after condition variable is known (steer)
or

• execute both paths & pass values at end (merge)

+ predicate

T path F path

value

+ predicate

T path value F path value

value

Spring 2007 CSE 471 - Dataflow Machines 12

WaveScalar Control

ρ (steer) φ (merge)

7

Spring 2007 CSE 471 - Dataflow Machines 13

Dataflow Computer ISA

Instructions
• operation
• destination instructions

Data packets, called Tokens
• value
• tag to identify the operand instance & match it with its fellow

operands in the same dynamic instruction instance
• architecture dependent

– instruction number
– iteration number
– activation/context number (for functions, especially

recursive)
– thread number

• Dataflow computer executes a program by receiving, matching &
sending out tokens.

Spring 2007 CSE 471 - Dataflow Machines 14

Types of Dataflow Computers

static:
• one copy of each instruction
• no simultaneously active iterations, no recursion

•

8

Spring 2007 CSE 471 - Dataflow Machines 15

Types of Dataflow Computers

dynamic
• multiple copies of each instruction
• better performance
• gate counting technique to prevent instruction explosion:

k-bounding
• extra instruction with K tokens on its input arc; passes a token

to 1st instruction of loop body
• 1st instruction of loop body consumes a token (needs one extra

operand to execute)
• last instruction in loop body produces another token at end of

iteration
• limits active iterations to k

•

Spring 2007 CSE 471 - Dataflow Machines 16

Prototypical Early Dataflow Computer

Original implementations were centralized.

Performance cost
• large token store (long access)
• long wires
• arbitration both for PEs and storing of result

data
packets

processing
elements

token
store instructions

instruction
packets

9

Spring 2007 CSE 471 - Dataflow Machines 17

Problems with Dataflow Computers

Language compatibility
• dataflow cannot guarantee a correct ordering of memory operations
• dataflow computer programmers could not use mainstream

programming languages, such as C
• developed special languages in which order didn’t matter

Scalability: large token store
• side-effect-free programming language with no mutable data

structures
• each update creates a new data structure
• 1000 tokens for 1000 data items even if the same value

• aggravated by the state of processor technology at the time
• delays in processing (only so many functional units, arbitration

delays, etc.) meant delays in operand arrival
• associative search impossible; accessed with slower hash

function

Spring 2007 CSE 471 - Dataflow Machines 18

Dataflow Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

10

Spring 2007 CSE 471 - Dataflow Machines 19

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2007 CSE 471 - Dataflow Machines 20

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

11

Spring 2007 CSE 471 - Dataflow Machines 21

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

Load-store ordering issue

*

Load

Store

+

j i

*

b

A

+

+

Spring 2007 CSE 471 - Dataflow Machines 22

Partial Solutions

Solutions led away from pure dataflow execution

Data representation in memory
• I-structures:

• write once; read many times
• early reads are deferred until the write

• M-structures:
• multiple reads & writes, but they must alternate
• reusable structures which could hold multiple values

12

Spring 2007 CSE 471 - Dataflow Machines 23

Partial Solutions

Local (register) storage for back-to-back instructions

Frames for distinct sequential instruction execution
• create “frames”, each of which stored the data for one iteration or

one thread
• not have to search entire token store (offset to frame)
• like having dataflow execution among coarse-grain threads rather

than instructions

Physically partition token store & place each partition with a PE

