
Von Neumann Execution Model

Fetch:
• send PC to memory
• transfer instruction from memory to CPU
• increment PC

Decode & read ALU input sources

Execute
• an ALU operation
• memory operation
• branch target calculation

Store the result in a register or memory
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Von Neumann Execution Model

Program is a linear series of addressable instructions
• next instruction to be executed is pointed to by the PC
• send PC to memory
• next instruction to execute depends on what happened during the 

execution of the current instruction

Instruction operands reside in a centralized, global processor memory 
(GPRs)
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Dataflow Execution Model

Instructions are already in the processor:

Operands arrive from a producer instruction via a network

Check to see if all an instruction’s operands are there

Execute
• an ALU operation
• memory operation
• branch target calculation

Send the result
• to the consumer instructions or memory
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Dataflow Execution Model

Execution is driven by the availability of input operands
• operands are consumed
• output is generated
• no PC

Result operands are passed directly to consumer instructions
• no register file
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Dataflow Computers

Motivation:
• exploit instruction-level parallelism on a massive scale
• more fully utilize all processing elements

Believed this was possible if:
• expose instruction-level parallelism by using a functional-style 

programming language 
• no side effects; only restrictions were producer-consumer

• scheduled code for execution on the hardware greedily
• hardware support for data-driven execution
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Dataflow Execution

All computation is data-driven.
• binary is represented as a directed graph

• nodes are operations
• values travel on arcs

• WaveScalar instruction

+

b

a+b

a

opcode destination1 destination2
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Dataflow Execution

Data-dependent operations are connected, producer to consumer
Code & initial values loaded into memory
Execute according to the dataflow firing rule

• when operands of an instruction have arrived on all input arcs, 
instruction may execute

• value on input arcs is removed
• computed value placed on output arc

+
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Dataflow Example

*

Load

Store

+

j i

*

b

A

+

+

A[j + i*i] = i;

b = A[i*j];
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Dataflow Execution

Control
• steer (ρ) merge (φ)

• convert control dependence to data dependence with value-
steering instructions

• execute one path after condition variable is known (steer)
or 

• execute both paths & pass values at end (merge)

+ predicate

T path F path

value

+ predicate

T path value F path value

value
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WaveScalar Control

ρ (steer) φ (merge)
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Dataflow Computer ISA

Instructions
• operation 
• names of destination instructions 

Data packets, called Tokens
• value
• tag to identify the operand instance & match it with its fellow 

operands in the same dynamic instruction instance
• architecture dependent

– instruction number
– iteration number
– activation/context number (for functions, especially 

recursive)
– thread number

• Dataflow computer executes a program by receiving, matching & 
sending out tokens.
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Types of Dataflow Computers

static:
• one copy of each instruction
• no simultaneously active iterations, no recursion

•

Spring 2008 CSE 471 - Dataflow Machines 14



Types of Dataflow Computers

dynamic
• multiple copies of each instruction
• better performance
• gate counting technique to prevent instruction explosion

k-bounding
• extra instruction with K tokens on its input arc;  passes a token 

to 1st instruction of loop body
• 1st instruction of loop body consumes a token (needs one extra 

operand to execute)
• last instruction in loop body produces another token at end of 

iteration
• limits active iterations to k

•
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Prototypical Early Dataflow Computer

Original implementations were centralized.

Performance cost
• large token store (long access)
• long wires
• arbitration both for PEs and storing of result

data
packets

processing
elements

token
store instructions

instruction
packets
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Problems with Dataflow Computers

Language compatibility
• dataflow cannot guarantee a correct ordering of memory operations
• dataflow computer programmers could not use mainstream 

programming languages, such as C
• developed special languages in which order didn’t matter

Scalability: large token store
• side-effect-free programming language with no mutable data 

structures
• each update creates a new data structure
• 1000 tokens for 1000 data items even if the same value

• aggravated by the state of processor technology at the time
• delays in processing (only so many functional units, arbitration

delays, etc.) meant delays in operand arrival
• associative search impossible; accessed with slower hash 

function
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Example to Illustrate the Memory Ordering Problem
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Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

Load-store ordering issue

*

Load

Store

+

j i

*

b

A

+

+

Spring 2008 CSE 471 - Dataflow Machines 21



Partial Solutions

Solutions led away from pure dataflow execution

Data representation in memory
• I-structures: 

• write once; read many times
• early reads are deferred until the write

• M-structures: 
• multiple reads & writes, but they must alternate
• reusable structures which could hold multiple values
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Partial Solutions

Local (register) storage for back-to-back instructions

Frames for distinct sequential instruction execution
• create “frames”, each of which stored the data for one iteration or 

one thread
• not have to search entire token store (offset to frame)
• like having dataflow execution among coarse-grain threads rather 

than instructions

Physically partition token store & place each partition with a PE
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